您好,欢迎来到爱够旅游网。
搜索
您的当前位置:首页饿了么大数据开发凉经

饿了么大数据开发凉经

来源:爱够旅游网

1 一个mapreduce进程会启动多少map进程多少reduce进程*

1)map数量由处理的数据分成的block数量决定default_num = total_size / split_size;
2)reduce数量为job.setNumReduceTasks(x)中x 的大小。不设置的话默认为 1。

2 讲下shuffle的过程

shuffle分为map端和reduce端的工作。

MapTask工作机制

(1)Read阶段:Map Task通过用户编写的RecordReader,从输入InputSplit中解析出一个个key/value。
(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序(快速排序),并在必要时对数据进行合并、压缩等操作。(5)Combine阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并(归并排序),以确保最终只会生成一个数据文件。

ReduceTask工作机制

(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Merge阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。
(3)Sort阶段:按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。(4)Reduce阶段:reduce()函数将计算结果写到HDFS上。

3 常见的数据倾斜情况以及解决方案

  • 空值引发的数据倾斜
    解决方案:
    第一种:可以直接不让null值参与join操作,即不让null值有shuffle第二种:因为null值参与shuffle时的hash结果是一样的,那么我们可以给null值随机赋值,这样它们的hash结果就不一样,就会进到不同的reduce中
  • 不同数据类型引发的数据倾斜
    解决方案:
    如果key字段既有string类型也有int类型,默认的hash就都会按int类型来分配,那我们直接把int类型都转为string就好了,这样key字段都为string,hash时就按照string类型分配了
  • 不可拆分大文件引发的数据倾斜
    解决方案:
    这种数据倾斜问题没有什么好的解决方案,只能将使用GZIP压缩等不支持文件分割的文件转为bzip和zip等支持文件分割的压缩方式。
    所以,我们在对文件进行压缩时,为避免因不可拆分大文件而引发数据读取的倾斜,在数据压缩的时候可以采用bzip2和Zip等支持文件分割的压缩算法。
  • 数据膨胀引发的数据倾斜
    解决方案:
    在Hive中可以通过参数 hive.new.job.grouping.set.cardinality 配置的方式自动控制作业的拆解,该参数默认值是30。表示针对grouping sets/rollups/cubes这类聚合的操作,如果最后拆解的键组合大于该值,会启用新的任务去处理大于该值之外的组合。如果在处理数据时,某个分组聚合的列有较大的倾斜,可以适当调小该值。
  • 表连接时引发的数据倾斜
    解决方案:
    通常做法是将倾斜的数据存到分布式缓存中,分发到各个Map任务所在节点。在Map阶段完成join操作,即MapJoin,这避免了 Shuffle,从而避免了数据倾斜。
  • 其他情况引发的数据倾斜
    解决方案:
    这类问题最直接的方式就是调整reduce所执行的内存大小。
    调整reduce的内存大小使用mapreduce.reduce.memory.mb这个配置。

4 HBase读写流程*

        

5 星形模型的特点

  • 维度表只和事实表关联,维度表之间没有关联;
  • 每个维度表的主码为单列,且该主码放置在事实表中,作为两边连接的外码;
  • 以事实表为核心,维度表围绕核心呈星形分布。

6 常见事实表几种?特点?周期形快照事实表的特点?除了是数值形的还有什么?*

7 主题域划分的思路*

按部门划分、按业务线划分、按业务系统划分、按业务过程划分。

8 数仓建模6连(细问项目)

        按照业务系统划分,先按系统划分一级主题域,再按系统各自的菜单(也就是子系统)划分二级主题域,例如主要的订票APP实际上有订票系统,还有积分系统,值机系统,抽奖活动系统等等。

        我来介绍下我做过的托运系统的主题域,其业务过程大致如下:创建订单(订单维度(订单id、流水号、订单号、下单时间)、客户维度(用户昵称、用户真实姓名、用户性别、用户身份证号、用户出生日期)、航班维度(起飞机场名称、起飞城市id、到达机场、名称、是否转机)、城市维度)->买家付款->客户值机(打印登机牌上的信息,有城市维度、客户维度、)->航班起飞->航班降落->用户服务。

        公共维度有城市维度(客户值机、航班起飞航班降落)、客户维度(创建订单、用户服务)、机长维度、乘务员维、机场维度、航班维度。

9 数据治理做了哪些工作?*

数据治理分为四个实施步骤:统筹规划→管理实施→稽核检查→资产运营,我主要参与了前两个步骤,在第一步统筹规划中,我的主要工作在盘点数据资产,其主要针对元数据,根据大数据之路的第12章,将元数据分成两类,技术性元数据和业务形元数据,然后针对业务形元数据梳理血缘图谱,并给元数据打标签。在第二步工作中,我主要通过计算统计量对数据质量做出评估,计算空值的比例,计算空值字段较多的比例,计算有效字段的中位数和众数(当空值达到一定比例时,认为该字段无效,遵循3西格玛准则,大于5%无效)

10 手撕SQL两道题

1.某一天的新用户。

窗口函数row_number()

2.连续7天登录的客户。*

先去重、再row_number()开窗、日期-rnk、最后group by id、rnk having count(*)>=7

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务