您好,欢迎来到爱够旅游网。
搜索
您的当前位置:首页The ignition, oxidation, and combustion of kerosene

The ignition, oxidation, and combustion of kerosene

来源:爱够旅游网
Theignition,oxidation,andcombustionofkerosene:Areview

ofexperimentalandkineticmodeling

PhilippeDagaut*,MichelCathonnet

`mesRe´actifs(LCSR),UPR4211,1c,Avenuedelarecherchescientifique,CNRS,LaboratoiredeCombustionetSyste

´ansCedex2,France45071Orle

Received24March2005;accepted28October2005

Abstract

Formodelingthecombustionofaviationfuels,consistingofverycomplexhydrocarbonmixtures,itisoftennecessarytouseless

complexsurrogatemixtures.Thevarioussurrogatesusedtorepresentkeroseneandtheavailablekineticdatafortheignition,oxidation,andcombustionofkeroseneandsurrogatemixturesarereviewed.Recentachievementsinchemicalkineticmodelingofkerosenecombustionusingmodel-fuelsofvariablecomplexityarealsopresented.q2005ElsevierLtd.Allrightsreserved.

Keywords:Ignition;Oxidation;Combustion;Kinetics;Kerosene;Surrogate;Modeling

Contents1.2.3.4.

Introduction..........................................................................Characteristicpropertiesofconventionaljetfuels...............................................Formulationofkerosenesurrogatefuels......................................................Experimentalkineticstudiesoftheignition,oxidationandcombustionofkeroseneandsurrogates...........4.1.Kerosene.......................................................................4.2.Surrogates......................................................................LiteraturesurveyofthechemicalkineticmodelingofthecombustionofJetA-1/JP-8....................Newkineticmodelingofkeroseneoxidationandcombustion......................................Reformulatedjet-fuels...................................................................Concludingremarks....................................................................Acknowledgements.....................................................................AppendixA...........................................................................References...........................................................................

4849505757587183868690

5.6.7.8.

1.Introduction

Untilnow,fossilfuelshavecontributedtoover80%ofenergyexpenses,andamongthem,oilplayedthedominantrole.Itisexpectedthatitsusewillnotdeclineuntilthenexttwoorthreedecades.Thetransportation

*Correspondingauthor.Tel.:C332382566;fax:C33238696004.

E-mailaddress:dagaut@cnrs-orleans.fr(P.Dagaut).

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9249

NomenclatureFIDGCJSRflameionizationdetectorgaschromatographyjet-stirredreactor(alsocalledcontinu-ouslystirredtankreactor,CSTR)MSmassspectrometryNaphtenealsocalledcycloalkanePtotalpressurePAHpoly-aromatichydrocarbonppmvpartpermillioninvolume(1ppmvcorrespondstoamolfractionof1!10K6)PRFprimaryreferencefuels(n-heptaneandiso-octanealsocalled1,2,4-trimethylpentane)SIenginesparkignitionenginetmeanresidencetimeinthejet-stirredreactorTtemperatureTCDthermalconductivitydetectorfequivalenceratio({[fuel]/[O2]}/{[fuel]/[O2]}atstoichiometry;fZ1atstoichiometrysector,includingaviation,anessentialpartofourmodernsociety,representsthelargestpartofthepetroleumbasedfuelsconsumption.Itsimportancehascontinuouslygrownataveryfastrateoverthelastcentury.Futureglobalenergyandenvironmentalissueshaveimposedchangesintheoperatingconditionsofturbojetengines.Asinothersectors,researchisnoworientedonsavingenergy,inparallelwithenhancedprotectionofourenvironment(reductionoftheemissionsofpollutantsandgreenhousegases)andfuelreformulation.Thedetailedmodelingofthecombustionofjetfuelsisausefultooltosolvetheproblemofcombustioncontrol,aswellastoreduceemissionsandfuelconsumption.Suchamodelingrepresentsarealchallengebecausepracticaljetfuelsarecomplexmixturesofseveralhundredsofhydrocarbonsincludingalkanes,cycloalkanes,aromaticsandpoly-cycliccompounds.

Inordertostudythecombustionbehaviorofcommercialjetfuels,mixtureswithwelldefinedandreproduciblecompositionarerequired:wecallthem‘surrogates’or‘model-fuels’.Forsakeofsimplicity,theyshouldincludealimitednumberofhydrocarbonswithawell-definedcomposition,andshowabehaviorsimilartothatofacommercialfuel.Theyareofextremelyhighinterestsincetheycanbeutilizedtostudytheeffectofchemicalcompositionandfuelpropertiesonthecombustionprocess.Applicationofsurrogatestothemodelingoftheignition,oxidation,andcombustionofconventionaljetfuelswillbediscussedhere,andtheresultsofrecentkineticstudiesontheoxidationofsurrogatekerosenemixtureswillbepresented.Finally,recentresultsconcerningthereformulationofjetsfuelsinthecontextofreducedoilavailabilitywillbepresented.

2.CharacteristicpropertiesofconventionaljetfuelsSincetheearlydevelopmentoftheturbojetengine,thecharacteristicsofjetfuelshaveevolved[1].Initially,theturbojetengineswerethoughttoberelativelyinsensitivetofuelproperties.Therefore,thewidelyavailableilluminatingkeroseneproducedforwicklampswasused.Inthe1940s,‘wide-cut’fuelwasusedforavailabilityreasons.Duetoitsrelativehigh-volatilityandassociatedevaporationandsafetyproblems,wide-cutjetfuels(JP-4,JetB)werereplacedbykerosene-typefuelinthe1970s(JetA,JetA-1,andJP-8).Nowadays,thereareessentiallythreetypesofconventionaljetfuels[2]:(i)akerosenetype,(ii)ahigh-flashpointkerosene,and(iii)abroadcut.MostinternationalcivilianaviationcompaniesusethekerosenetypeJetA-1whereassomemilitaryaviationfuelsareveryclosetoJetA-1(TR0inFrance,AVTURintheUnitedKingdom,andJP-8intheUnitedStatesofAmerica),althoughtheyincludedifferentadditives[1–3].Actually,JetAisusedintheUnitedStatesandJetA-1isusedintherestoftheworld.TheimportantdifferencebetweenJetAandJetA-1concernsthefreezingpoint(K408CforJetAandK478CforJetA-1).Allthejetfuelsmustmeetgeneralphysicalpropertyspecifications.ThoseforJetA-1(Appendix1)wereincorporatedinastandarddefinedin1994astheAviationFuelQualityRequirementforJointlyOperatedSystems(AFQRJOS)[2].Althoughturbojetenginesarefarmorefuel-tolerantthanSIengines,theincreasedoperatingpressuresandtemperatureshaverenderedthemodernturbojetenginesfuel-sensitive[2,4].Thereforethespecificationsforjetfuelsrepresentanoptimalcompro-miseofpropertiesforengineperformancesandsafetyaspectsduringstorageanddistribution.

50P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

Amongthepropertieslinkedtothequalityofcombustion[2],specificationrequirementsconcernvolatility,viscosityandfreezingpoint,density,heatingvalue,smokepointandluminosityfactor,aromaticcontent,andthermalstabilityofthefuel(AS1655).Combustioninturbojetenginesischaracterizedbytheformationofsootparticleswhichmustbeminimizedforseveralreasons:(i)sootcanbeharmfulfortheenginebecauseofcarbondepositsandradiantheatlosswhichcanleadtohotspotsortohighcombustorwalltemperature,(ii)sootemissionsfromjetenginesaffecthighaltitudesatmosphericchemistry,and(iii)sootfavorsradardetectionofmilitaryaircrafts.Fuelswithhigharomaticscontents,especiallypoly-aromatics,producemoresoot.Thisiswhyboththetotalaromaticcontentislimitedto22–25%andthenaphthalenecontentto3%involume.Practically,thearomaticcontentofJP-8variesbetween10and25%withameanat18%involume[3].However,thearomaticcontentofkerosenehasincreasedsincethesixties[4]foreconomicreasons,andthequalityofkeroseneisexpectedtodeteriorateinthefuturewiththereducingavailabilityoflightcrudes.

Table1givesthemaincharacteristicsofJP-8andJetA-1reportedbyseveralauthors[3,5–7],comparedwiththegeneralcharacteristicsofkerosenefromGuibet[2].Table1alsoincludestheaveragecompositionbychemicalfamiliesofJP-8/JetA-1[3,5–7]andkerosene[2].

Theaveragechemicalformulaforkerosene(JetA,JetA-1,TR0,JP8)differsfromonesourcetoanotherandrangesfromC10.9H20.9toC12H23:Gracia-Salcedoetal.[9]usedC12H23,EdwardsandMaurice[3]gave

´ret[10]C11H21,Martel[6]gaveC11.6H22,Gue

determinedC11H22,NguyenandYing[11]used

Table1

MaincharacteristicsofkerosenejetfuelProperty

MolecularweightApproximateformulaNumberofCatomsinthefuel

H/Cratio

Boilingrange8C

Specificgravityat158CAv.Compositioninvol%AromaticsCycloalkanesParaffinsOlefins

JP-8[5]

JP-8[6]152

C10.9H20.910.91.92

Average204

C11H23.Furtherinformationcanbefoundinpreviousreports[12–14]whereasjetA-1specificationsaregiveninAppendixA.Asmostofthehydrocarbonmixturesusedasafuel,thecompositionofkeroseneissubjecttovariationsofcomposition.Thecompositionvariesfromonesourcetoanother[15,16]andissubjecttochangesduetothermalinstability.ThespecificationtestdeviceforjetfuelisthethermaloxidationtestasdescribedinAS3241.Thethermalstabilityofjetfuelsisimprovedviatheuseofadditives.Furtherinformationcanbefoundin[8,17,18].

3.FormulationofkerosenesurrogatefuelsSincespecificationsonkeroseneonlyincludegeneralphysicalproperties,manyhydrocarbonmix-turescanmeetthesespecifications,althoughtherelativeproportionsofthevariouschemicalfamiliesisconstrainedbythegeneralphysicalproperties.Becausethevariationsincompositionmaybelargefrompurchasetopurchase[15],amoredefinitechemicalcompositionwasfoundnecessaryformodel-ingandexperimentalstudies.Mixturesofalimitednumberofhydrocarbonshavebeenproposedtorepresentcommercialkerosene.Thesesingle-com-ponentormulti-componentfuelsareclassified[3]asphysicalsurrogatesiftheyhavethesamephysicalpropertiesastherealfuel,orchemicalsurrogatesiftheyhavethesamechemicalpropertiesastherealfuel.Surrogateswhichhaveboththesamephysicalandchemicalpropertiesasthecommercialfuelarecalledcomprehensivesurrogates.

AliteraturesurveyoffuelblendsandsurrogatesformulatedtoreproducethebehaviorofaviationfuelswasperformedbyEdwardsandMaurice[3],yielding

JP-8/JetA-1[3]JetA[6]162C11.6H2211.61.9

Average216

JP-8[7]

Kerosene[2]–9–131.9–2.1140–2800.77–0.8310–2020–3050–650

–––

140–3000.812020582

C11H21111.91165–2650.811820602

–––––

18(monoaro.)C2(diaro.)20

28(n-par.)C29(i-par.)–

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9251

recommendationsforthevariousclassesofsurrogateapplications.Thesimplestphysicalsituationissinglephaseheattransferwithoutchemicalreaction:inthatcase,asinglecomponentwithapproximatelycorrectcriticaltemperaturecanbeusedassurrogate.Forexample,n-dodecanehasphysicalpropertiessimilartoJP-7andJP-8/JetA-1[3].Forotherpropertiessuchasfuelvaporization,injectionandmixingwithoutchemicalreaction,amulti-componentsurrogateisnecessarytomatchdistillationcurve.Toreproducefuelignition,generalthermal-oxidationbehaviororemissionsduringcombustion,achemicalsurrogatethatmatchestheimportantchemicalclasseswasrec-ommendedbyEdwardsandMaurice[3].

Itisinterestingtonotethatforgasoline,thechemicalsurrogatesusuallyusedtodeterminetheresistancetoknockdonotreflectitschemicalcomposition:onlytwohydrocarbons,alinearalkane(n-heptane),andabranchedone(2,2,4-trimethylpentaneor‘iso-octane’)havebeenchosenasthecomponentsofprimaryreferencefuels(PRF),withoctanenumberadjustedbyalinearcombinationofthetwo.Morerecently,otherstandardmixturesincludingtolueneinadditionton-heptaneandiso-octanehavebeenadopted[2]forabetterprecisioninthedeterminationofgasolineoctanenumbers.EdwardsandMaurice[3]alsoreportedthatsimpletwo-componentsurrogatesdonotadequatelyreproducetheignitionbehaviorofrealgasolineinflowreactorsandengines,andthatagasolinesurrogateobtainedbyadditionofanaromaticandanalkenetothePRFmixturebetterreproducestheignitionbehaviorofthisfuel.AmorerecentstudyofLenhertetal.[19]showedthattheadditionoftolueneandn-pentenetothePRFmixtureimprovestheaccuracywithwhichthesurrogatereproducesthelow-andintermediate-temperaturereactivityofindustrystandardfuels.Suchasurrogateismorerepresentativeofthechemicalcompositionofpremiumgasolinewhosemaincon-stituentsaremonoaromatichydrocarbons,branchedalkanes,and,toalowerextent,alkenes[2].

ConcerningJP-8,EdwardsandMaurice[3]reportedthestudiesofSchulzandco-workers[20,21]onthethermalandoxidativestabilityofthisfuelandgavethecompositionformulatedbythisauthorforasurrogate,whichcouldreproducethegeneraloxidationbehaviorofJP-8,butdidnotreproducethedepositionlevelsofdistillatefuels.Morerecently,Violietal.[7]proposedanewapproachfortheformulationofaJP-8comprehensivesurrogatefuelanddetailedthepro-cedurefollowedtomatchpracticalfuelsonbothphysicalandchemicalproperties:volatility,sootingtendency,andcombustionproperty.Theytestedtwoslightlydifferentsurrogates(Table2)reproducingverywellvolatilityandsootingpropensityofarealJP-8.Thesurrogate2wasshowntobetterfitthedistillationcurveofJP-8.Forcomparison,wehavealsoreportedinTable2thecompositionoftheJP-8surrogateelaboratedbySchulz[20,21]andthecompositionofastandardcommercialjetfuel[2].

Table2showsthatthechemical-classcompositionofthesurrogatemixture#2ofViolietal.[7]isratherdifferentfromthatofthecommercialfuelgivenbyGuibet[2].Inparticular,thissurrogatehasahighercontentofdicycliccycloalkane(decalin)thanthecommercialfuel,andincludesnonon-condensedcycloalkanes.However

Table2

CompositionofJP-8surrogatesandofacommercialjet-fuelCompositionofthesurrogatesin[7](vol%)Sur-1

Isooctane10n-Dodecane30n-Tetradecane20

Methylcyclohexane20m-Xylene15Tetralin5

Sur-2

n-Octane3.5n-Dodecane40n-Hexadecane5Xylenes8.5Decalin35Tetralin8

Note:errorinTable2of[7]

Isooctane5Decane15Dodecane20Tetradecane15Hexadecane10

Methylcyclohexane5Cyclooctane5m-Xylene5Butylbenzene5

Tetramethylbenzene5Tetralin5

Methylnaphtalene5

Paraffins58.30

Non-condensedcycloalkanes23.85Dicyclicnaphtenes2.40Alkylbenzenes13.40Indanes,tetralins1.70Naphtalenes0.35

Compositionofthesurrogatefuelin[20,21](mass%)

Compositionofacommercialjet-fuelfromGuibet[2](mass%)

Table3

Availableexperimentalkineticdataforthecombustionofkeroseneandsurrogatefuels52TechniqueFlowtube

FlowtubeFlowtubeFlowtubeShocktubeShocktube

ShocktubeShocktubeFlatflameburnerJSR

Fuel

RDE/F/KER/201-206

JetA-1Jet-AJet-A

KeroseneJet-A

Jet-A

Jet-AandJP-8

n-Decane

TR0andsurrogate

mixture:79%n-undecane,10%n-propylcyclohexane,11%1,2,4-trimethylbenzene

Conditions

Sprayinjectionofthefuel!100mm.Ignitionobtainedbyinjectionofthefuelinheatedaircontaining12–16%ofoxygen

Sprayinjectionofthefuel.Ignitionobtainedbyinjectionofthefuelinheatedairmostlyinfuel-richconditions.Ignitiondelaydeterminedbytemperatureriseendlightemission

Ignitionmeasuredforkerosene–airmixtures,equival-enceratiovaried(0.3–1),pressurewithintherange10–30atm.Ignitionobtainedbyinjectionofthefuelinheatedair.Ignitiondelaydeterminedbytemperaturerise,pressurerise,lightemission

Fuel–airmixtures;temperaturerange930–1020K,atmosphericpressure

Kerosene–airmixturesignitedinstoichiometriccon-ditionsat1atm,900–1300K

Kerosene–airmixturesignitedatca.8atm,equivalenceratiosof0.5,1,and2,1000–1700K

Kerosene–airmixturesignitedat10and20atm,equivalenceratiosof0.5,1,and2,1040–1380KKerosene–airmixturesignitedinstoichiometriccon-ditionsat30atm,900–1100K

5.1%offuel,41.2%oxygen,53.7%argon,6kPa,equivalenceratioof1.9,sootingflame,velocityofthecoldgasmixtureattheburnerexitZ18.6cm/s,flamediameterZ9.5cm,temperaturemeasurementbycoated(BeO/Y2O3)Pt/Pt–Rh10%thermocouple(S)withwiresof50mm

0.1%moloffuel,dilutedbynitrogen,1atm,variableresidencetime(0.1–0.22s)andconstanttemperature(873–1033K),equivalenceratiovaried(0.2,1,1.5),temperaturemeasurementbyuncoatedchromel–alumelthermocouple(K)withwiresof0.12mm

Datatypeandcomments

Ignitiondelaysmeasuredversustemperature(1070–1270K)atatmosphericpressure

Ignitiondelaysmeasuredversustemperature(720–1070K)at4–11bar,equivalenceratiointherange0.5–7.5

Ignitiondelaysmeasuredversustemperature(700–830K).Arrheniusequationderivedfortheignitiondelays

IgnitiondelaysmeasuredversustemperatureatdifferentequivalenceratiosusedtoproposeanArrheniusexpressionforthedelays

Ignitiondelaysmeasuredversustemperatureatoneequivalenceratio

Ignitiondelaysmeasuredversustemperatureatthreeequivalenceratios.Ignitiondelaycorrelationderivedfromthedata

Ignitiondelaysmeasuredversustemperatureatthreeequivalenceratios.Ignitiondelaycorrelationderivedfromthedata.

Ignitiondelaysmeasuredversustemperatureatthreeequivalenceratios.Ignitiondelaycorrelationderivedusingthesedataandthosefrom[27,28]

Molefractionsprofilesasafunctionofdistancetotheburner,MBMS(molecularbeammassspectrometry)measurements.Profilesreported:n-decane,O2,Ar,CO,H2O,H2,CO2,C2H2,C2H4,CH4,H,OH,CH2,CH3,C2H3,C2H5,C2H6,C3H3,C3H5,C3H7,C3H8,C4H2,C4H4,C4H5,C4H6,C4H8,C4H9,C6H6.Datausedtoproposeadetailedkineticscheme

MolefractionprofilestakenbysonicprobesamplingatlowpressureandanalysesbyGC–FID,-TCD.MSidentification.Profilesreported:n-undecane,n-propyl-cyclohexane,1,2,4-trimethylbenzene,CO,CO2,CH4,C2H4,C2H6,C3H6,1-C4H8,1,3-C4H6.Datausedtoproposeaquasi-globalkineticscheme

Reference[22]

[23]

P.[24]

Dagaut,M.[25]

Cathonnet/[26]Progress[27]

in[28]

Energyand[29]

Combustion[41]

Science32(2006)[35]

48–92FlatflameburnerJSRJetburnerJSRJSRn-DecaneandTR0

n-Decane

KeroseneAVTURn-DecaneandTR0

n-Decane

(1)8%offuel,56.4%oxygen,35.6%argon,6kPa,equivalenceratioof2.2,sootingflames,velocityofthecoldgasmixtureattheburnerexitZ24cm/s,flamediameterZ9.5cm,temperaturemeasurementbycoated(BeO/Y2O3)Pt/Pt–Rh10%thermocouple(S)withwiresof50mm.

(2)JetA-1andn-decaneflames:variationoftheequivalenceratio(1.0–2.5)keepingtheflowrateofargonandthetotalflowrateconstant(coldgasmixtureattheburnerexitZ27.5cm/s)

0.1%moloffuel,dilutedbyN2,1atm,variableresidencetime(0.1–0.22s)andconstanttemperature(873–1033K),equivalenceratiovaried(0.2,1,1.5),temperaturemeasurementbyuncoatedchromel–alumelthermocouple(K)withwiresof0.12mm

Sixturbulentjetflamesofpre-vaporizedkerosenestudiedinthepressurerange1–6.44barforseveralfuelandairflowrates.Reynoldsnumbervariedfrom9500to32800.MeantemperaturemeasuredbythermocouplePt/Pt–Rh10%thermocouple(S)withwiresof50mm.0.1%moloffuel,dilutedbynitrogen,variable

temperature(750–1150K)atseveralfixedresidencetimes(0.5,1and2s),equivalenceratiovaried(0.5,1,1.5),temperaturemeasurementbyuncoatedchromel–alumelthermocouple(K)withwiresof0.12mm.

Experimentsreportedat10,20and40atmforkeroseneandonlyat10atmforn-decane

0.1%moloffuel,dilutedbynitrogen,10atm,fixedresidencetime(1.0s)andvariabletemperature(550–1150K),equivalenceratiovaried(0.1–1.5),tempera-turemeasurementbyuncoatedchromel–alumelther-mocouple(K)withwiresof0.12mm.ThestudycoversthecoolflameandNTCregimes

(1)Molefractionsprofilesasafunctionofdistanceto[30,32]

theburner,MBMS(molecularbeammassspec-trometry)measurements.Profilesreported:n-decane,O2,Ar,CO,H2O,H2,CO2,C2H2,C2H4,C4H4,C4H5,C6H6.Datausedtoproposeadetailedkineticscheme(2)SignalmeasurementsreportedforC2H2,C6H6,phenylacetylene,vinylbenzene.Comparisonoftheformationofsootprecursorsinkeroseneandn-decaneflame

Molefractionprofilestakenbysonicprobesamplingat[42]

lowpressureandanalysesbyGC–FID,-TCD.MSidentification.Profilesreported:n-decane,CO,CO2,CH4,C2H4,C2H6,C3H6,1-C4H8,1,3-C4H6,1-C5H10,1-C6H10,1-C7H14,1-C8H16,1-C9H18.Datausedtoproposeaquasi-globalkineticscheme

SootvolumefractionsmeasuredbyHe–Nelaser

[33]

absorption.TheflameAwasmodeledbyWenetal.[67]

Molefractionprofilestakenbysonicprobesamplingat[36]

lowpressureandanalysesbyGC–FID,-TCD.MSidentification.Profilesreported:n-decane,O2,H2,CO,CO2,CH2O,CH4,C2H4,C2H6,C3H6,propyne,allene,1-C4H8,1-C5H10,1-C6H10,1-C7H14,1-C8H16,1-C9H18,C6H6,toluene,o-xylene,p-xylene.Datausedtoproposeadetailedkineticschemeforn-decaneoxidation.Thekerosenemodelfuelisn-decane

Molefractionprofilestakenbysonicprobesamplingat[40]

lowpressureandanalysesbyGC–FID,-TCD.MSidentification.Profilesreported:n-decane,O2,H2,CO,CO2,CH2O,CH3OH,CH4,C2H4O,CH3CHO,C3H6O,C2H4,C2H6,C2H5CHO,acetone,C3H6,propyne,

allene,1-C4H8,2-C4H8,1,3-C4H6,1-C5H10,2-C5H10,1,3-C5H8,C6H6,1-C6H10,1-C7H14,1-C8H16,1-C9H18,1-,2-,3-,4-,and5-decenes,2,5-dipropyltetrahydrofuran,cisandtrans2-ethyl-5-butyltertahydrofuran,trans2,5-dipropyltetrahydrofuran,cisandtrans2-methyl-5-pentyltetrahydrofuran

(continuedonnextpage)

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9253Table3(continued)TechniqueJSR

FlatflameburnerShocktubeTurbulentflowreactorShocktubeJSRFuel

n-DecaneandTR0

n-DecaneandTR0

n-Decane

n-Decane

n-Decane

TR0

Conditions

0.025–0.1%moloffuel,dilutedbynitrogen,variabletemperature(550–1150K)atseveralfixedresidencetimes(0.5,1and2s),equivalenceratiovaried(0.1–1.5),temperaturemeasurementbyuncoatedchromel–alumelthermocouple(K)withwiresof0.12mm.

Experimentsreportedat10,20and40atmforkeroseneandonlyat10atmforn-decane.ThestudycoversthecoolflameandNTCregimes

(1)1.15cm3/sofn-decane,10.3cm3/sofoxygen,24.

6cm3/sofnitrogen,101kPa,equivalenceratioof1.7,slightlysootingflame,velocityofthecoldgasmixtureattheburnerexitZ11.7cm/s(473K,1atm),flamediameterZ2.5cm,temperaturemeasurementbycoated(BeO/Y2O3)Pt/Pt–Rh10%thermocouple(S)withwiresof50mm

(2)1.06cm3/sofkerosene,10.3cm3/sofoxygen,24.6cm3/sofnitrogen,101kPa,equivalenceratioof1.7,slightlysootingflame,velocityofthecoldgasmixtureattheburnerexitZ11.7cm/s(473K,1atm)

Mixturesofn-decane/airignitedatthreeequivalenceratios(0.5,1.0,and2.0)at13bar(700–1300K)andfZ0.67,1.0,and2.0at50bar(650–960K).Ignitiondelaysbasedonpressuretracesrecords

Pyrolysisof1456ppmvofn-decaneat1060Kinvestigatedasafunctionofresidencetime(40–

270ms)at1atm.Oxidationof1452ppmvofn-decaneat1019Kasafunctionofresidencetime(10–140ms)at1atm,fZ1

0.49–1.5%n-decaneand4-23.25%O2,dilutionbyargon.Temperaturerange1239–1616K,pressurerange1.82–10atm

0.07%moloffuel,dilutedbynitrogen,1atm,fixedresidencetime(0.07s)andvariabletemperature(900–1300K),equivalenceratiovaried(0.5,1,1.5,2),temperaturemeasurementbyprotected(thinsilicaenvelop)Pt/Pt–Rh10%thermocouple(S)withwiresof0.1mm

Datatypeandcomments

MolefractionprofilestakenbysonicprobesamplingatlowpressureandanalysesbyGC–FID,-TCD.MSidentification.Profilesreported:n-decane,O2,H2,CO,CO2,CH2O,CH3OH,CH4,C2H4O,CH3CHO,C3H6O,C2H4,C2H6,C2H5CHO,acetone,C3H6,propyne,

allene,1-C4H8,2-C4H8,1,3-C4H6,1-C5H10,2-C5H10,1,3-C5H8,C6H6,1-C6H12,1-C7H14,1-C8H16,1-C9H18,1-,2-,3-,4-,and5-decenes,2,5-dipropyltetrahydrofuran,cisandtrans2-ethyl-5-butyltertahydrofuran,trans2,5-dipropyltetrahydrofuran,cisandtrans2-methyl-5-pentyltetrahydrofuran

MolefractionasafunctionofthedistancetotheburnertakenbysonicprobesamplingatlowpressureandanalysesbyGC–FID,-TCD.Profilesreported:n-decane,O2,CO,H2,N2,H2O,CO2,CH4,C2H6,C2H4,C2H2,allene,propyne,C4H2,1-C4H8,i-C4H8,2-C4H8,C5H10,C6H6.Adetailedkineticmodelingofthisflame

ispresentedbyDoute

´[68]Ignitiondelays(firstandsecondstage)measuredoverthetemperaturerange650–1300Kat13and50bar.Useofaheatedshocktube(373K).

MolefractionprofilestakenbycooledprobesamplingandanalysesbyGC–FID,-TCD.Profilesreported:n-decane,O2,CO,CO2,CH4,C2H2,C2H4,C2H6,C3H6,1-C4H8,1,3-C4H6,1-C5H10,1-C6H12IgnitiondelaysmeasuredasafunctionoftemperatureusedtoproposeanArrheniuscorrelation

MolefractionprofilestakenbysonicprobesamplingatlowpressureandanalysesbyGC–FID,-TCD,onlineGC–MSidentificationandquantification.Profilesreported:O2,H2,CO,CO2,CH2O,CH4,C2H4,C2H6,C3H6,1-C4H8,1,3-C4H6,1,3-cyclopentadiene,1-C5H10,2-C5H10,C6H6,1-C6H12,toluene.Detailedkineticmodelingpresentedusingthemixture74%n-decane,15%n-propylbenzene,11%n-propylcyclohex-ane(mol)asmodel-fuel

Reference[37]

P.Dagaut,M.[31]

Cathonnet/ProgressinEnergy[45]

and[46]

CombustionScience32(2006)[38]

48–92JSRJSR

JSR

Shock-tubeBunsenburnerJetA-1

Surrogatemixture:n-decane,n-propylbenzene

Surrogatemixture:n-decane,1,2,4-trimethylben-zene

n-Decane

JetA-1

(1)at10atm:0.067%moloffuel,dilutedbynitrogen,fixedresidencetime(0.5s)andvariabletemperature(800–1200K),equivalenceratiovaried(0.25–2),temperaturemeasurementbyprotected(thinsilicaenvelop)Pt/Pt–Rh10%thermocouple(S)withwiresof0.1mm

(2)at20atm:0.05%moloffuel,residencetime1.0s,equivalenceratiovaried(0.75–2.5),750–1150K

(3)at40atm:0.025–0.05%moloffuel,residencetime2.0s,equivalenceratioof1,750–1150K

0.076%moloffuel(n-decane/n-propylbenzene80/20and70/30weight),dilutedbynitrogen,10atm,fixedresidencetime(0.5s)andvariabletemperature(800–1100K),equivalenceratiovaried(0.75–2),temperaturemeasurementbyprotected(thinsilicaenvelop)Pt/Pt–Rh10%thermocouple(S)withwiresof0.1mm

0.075%moloffuel(n-decane/1,2,4-trimethylbenzene80/20mol),dilutedbynitrogen,10atm,fixedresidencetime(0.5s)andvariabletemperature(800–1200K),equivalenceratiovaried(0.752),temperature

measurementbyprotected(thinsilicaenvelop)Pt/Pt–Rh10%thermocouple(S)withwiresof0.1mm

(i)Mixturesofn-decane(270–500ppmv)/oxygen/argonignitedathightemperature(1345–1537K)andc.a.5.8baratseveralequivalenceratios(fZ0.5,0.8,1).TheignitiondelaysweredeterminedbymonitoringtheOHandCHsignals.TheignitiondelaycorrespondedtothepeakvaluesofOHandCHconcentrations

(ii)Thelaminarflamespeedsofn-decane/airmixturesweremeasuredat1bar,473K,forequivalenceratiosrangingfrom0.9to1.3

ThelaminarflamespeedsofJetA-1/airmixturesweremeasuredat1bar,473K,forequivalenceratiosrangingfrom0.9to1.4

Molefractionprofilestakenbysonicprobesamplingat[39]

lowpressureandanalysesbyGC–FID,-TCD,onlineGC–MSidentificationandquantification.Profilesreported:H2,O2,CO,CO2,CH2O,CH4,C2H6,C2H4,C2H2,C3H6,C3H8,propyne,allene,1-C4H8,iC4H8,cis2-C4H8,trans2-C4H8,1-butyne,1,3-butadiene,1,3-cyclopentadiene,1-C5H10,1-C6H12,benzene,

CH3CHO,acrolein,isoprene,1-C7H14,methylcyclo-hexane,toluene,1-C8H16,ethylcyclohexaneethylben-zene,mCp-xylene,styrene,o-xylene,1-C9H18,n-nonane,n-propylbenzene,1,2,4-trimethylbenzene,n-decane,n-undecane

Molefractionprofilestakenbysonicprobesamplingat[39]

lowpressureandanalysesbyGC–FID,-TCD,onlineGC–MSidentificationandquantification.Profilesreported:H2,O2,CO,CO2,CH2O,CH4,C2H6,C2H4,C2H2,C3H6,C3H8,propyne,allene,1-C4H8,iC4H8,cis2-C4H8,trans2-C4H8,1,3-butadiene,1,3-cyclopen-tadiene,1-C5H10,1-C6H12,benzene,CH3CHO,acro-lein,1-C7H14,toluene,1-C8H16,ethylbenzene,styrene,n-propylbenzene,1-C9H18,n-decane,benzaldehyde,phenol

Molefractionprofilestakenbysonicprobesamplingat[39]

lowpressureandanalysesbyGC–FID,-TCD,onlineGC–MSidentificationandquantification.Profilesreported:H2,O2,CO,CO2,CH2O,CH4,C2H6,C2H4,C2H2,C3H6,propyne,allene,1-C4H8,1,3-butadiene,1,3-cyclopentadiene,1-C5H10,1-C6H12,benzene,CH3CHO,acrolein,isoprene,1-C7H14,toluene,1-C8H16,ethylbenzene,mCp-xylene,styrene,o-xylene,1-C9H18,n-nonane,1,2,4-trimethylbenzene,n-decane,n-undecane

Ignitiondelaysofn-decanemeasuredusingaheated[34]

shock-tube

Flamespeedsmeasuredatatmosphericpressure[34]

(continuedonnextpage)

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9255Table3(continued)TechniqueFuel

Conditions

Datatypeandcomments

ReferenceBunsenburner

Surrogatemixture:n-Thelaminarflamespeedsofasurrogatemixture(n-Flamespeedsmeasuredatatmosphericpressure

[34]

decane,n-propylbenzenedecane,n-propylbenzene80/20inweight)inairweremeasuredat1bar,473K,forfrangingfrom0.9to1.4Counterflowdiffusionflame

Surrogatemixture:iso-Thesurrogatefuelcompositioninmolwas:10%iso-Temperatureprofilesandextinctionlimitsarereported.[47]

octane,methylcyclohexane,octane,20%methylcyclohexane,15%m-xylene,30%Asemi-detailedkineticschemeisusedtosimulatethem-xylene,n-dodecane,tet-n-dodecane,5%tetralin,20%n-tetradecane.Non-experiments

ralin,n-tetradecane

sootingcounterflowdiffusionflames(1.6%surrogateand76.8%oxygenatastrainrateof115sK1,1.4%surrogateand76.8%oxygenatastrainrateof95s-1).Thetemperaturewasmeasurementbycoated(silica)Pt/Pt–Rh10%thermocouple(S)withwiresof190mm,atmosphericpressure

Flowreactor

Surrogatemixtures:n-Threemixturesused:n-dodecane40%,2,2,4,4,6,8,8-TheformationofCOismeasuredbyNDIR(non-[48]

dodecane,2,2,4,4,6,8,8-hep-heptamethyl-nonane60%;n-dodecane37%,methylcy-dispersiveinfraredabsorption)inthecoolflameandtamethylnonaneormethyl-clohexane63%;n-dodecane51%,a-methylnaphtaleneNTCregime.Semi-detailedorlumpedkineticmodelscyclohexaneora-49%.Theyhavestudiedexperimentallytheoxidationofwereusedtosimulatetheoxidationofthepuremethylnaphtalenethesebinarymixturesinapressurizedflowreactoratcomponentsandmixtures

8atm,equivalenceratioof0.3,tZ120ms,600–800KShocktuben-Decane

0.49–1.5%n-decaneand4-23.25%O2,dilutionbyIgnitiondelaysmeasuredasafunctionoftemperature[49]

argon.Temperaturerange1239–1616K,pressurerangeusedtoproposeanArrheniuscorrelation.Post-shock1.82–10atm

speciesmeasurementsarereportedforCH4,C2H4,C3H6,1-C4H8,1-C5H10,1-C6H12,1-C7H14,1-C8H16.Adetailedkineticschemeisproposedtomodeltheresults

56P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9257

theseauthorsshowedthatanothersurrogatewith20%methylcyclohexane,anhydrocarbonwhichismorerepresentativeofthecycloalkanefamilyinJP-8thandecalin,didnotreproducesocloselytheboiling-pointcurveofpracticalJP-8.

4.Experimentalkineticstudiesoftheignition,oxidationandcombustionofkeroseneandsurrogates4.1.Kerosene

Thekineticsofkerosene(JetA-1,JP-8,AVTUR,TR0)ignition,combustion,andoxidationwerepre-viouslyreportedintheliterature.Table3summarizestheavailabledataforthekineticmodelingofkerosenecombustion.Theavailabledatafortheignition,oxidationandcombustionofavarietyofsurrogates,includingthesimplestone,n-decane,arealsoreportedinTable3.

Regardingtheignitionofkerosene,averylimiteddatabasewasavailableuntilrecently[22–26].Theuseofexperimentaldevicesmoreidealthaninearlystudies,suchasheatedshock-tubesoperatingoverawiderangeoftemperatureandpressure[27–29]recentlyhelpedcomplementingtheearlydatabase.Borisov[26]measuredtheignitiondelaysofkerosenebehindareflectedshockwaveforastoichiometrickerosene–airmixtureatatmosphericpressure,overthetemperaturerange900–1300K.Thesedataareinlinewiththeearliermeasurementsreportedby

Mullins[22].Morerecently,Deanetal.[27]measuredtheignitiondelaysofJet-A–airmixturesatca.8atm,overthetemperaturerange1000–1700K,andequivalenceratiosof0.5,1,and2,usingaheated(ca.348–373K)shocktube.TheyderivedanArrheniusexpressionfortheignitiondelaysofkerosene–airmixtures.Starikowskiietal.[28]measuredtheignitiondelaysofJetA-airmixturesat10and20atm,overthetemperaturerange1040–1380K,forequivalenceratiosof0.5,1,and2,bymeansofaheated(900K)shocktube.Themeasurementsweredonebehindareflectedshockwave,recordingtheemissionofOH*at309nm.AnArrheniusexpressionfortheignitionofkerosene–airmixtureswasderivedfromtheseexperiments:t=msZ10K3ðP=atmÞK0:39!4K0:57!exp½ð14;700KÞ=T󰀄DavidsonandHanson[29]recentlycomparedtheirignitiondelaymeasuredbehindareflectedshockwave(900–1100K,30atm,fZ1)forJet-AandJP-8withthedataof[27,28],showingconsistency.Fig.1presentstheignitiondataavailabletodate[22,25–29].

Theflamestructuresdatabaseissomewhatlimited[30–33]sinceonlyfuel-richconditionswereinves-tigatedinthepast:todate,flamestructuresdataforstoichiometricandfuel-leanconditionsaremissingandnodataareavailableaboveatmosphericpressure.Therefore,newexperimentalworkisneeded,particularlyunderhigh-pressureconditions

(a)

400300200

Mullins (a)Freeman and Lefebvre (b)(b)10

4

(a)(b)103Ignition delay/ s(c)(d)(e)(f)Ignition delay/ms100

102

4030200.95

1

1000K/T

1.05

1.1

101

100

0.5

0.60.7

0.80.91000K/T

11.1

Fig.1.Ignitiondelayofkerosene–airmixtures;(a):data(a)from[22],data(b)from[25];(b)Thedatascaledto20atm[29]weretakenfrom[29]for(a:JetAat30atm),from[29]for(b:JP-8at30atm),from[28]for(c:JetAat20atm),from[28]for(d:jetAat10atm),from[27]for(e:keroseneat10atm),andfrom[27]for(f:JetAat10atm).

58P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

n-C10H22x5O2COArH2OH22000

0.50.4

T/K1500

Mole fraction00.511.5z/cm

22.530.30.20.1

1000

5000.05

0

00.511.5z/cm

22.530.0020.04

C2H4C4H4C4H5C6H6Mole fraction0.030.020.010

CO2Mole fractionH20.00150.0015e-400.511.5z/cm

22.53000.511.5z/cm

22.53Fig.2.Flamestructureunderlowpressureconditions:8%ofkeroseneTR0,56.4%oxygen,35.6%argoninmol,6kPa,equivalenceratioof2.2[30,32].

relevanttoaero-jetengineoperatingconditions,toimprovetheexistingdatabase.Theavailableflamestructuresatlow-pressurearepresentedinFig.2whereasFig.3presentstheavailabledataatatmosphericpressure.TheburningvelocityofJetA–1–airmixtureswererecentlymeasuredatatmos-phericpressure[34],extendingtheexistingflamedatabase(Fig.4).Measurementsunderhigh-pressureconditionsaremissing,althoughtheyareneededtotesttheproposedkineticschemes.Lotsofdatawereobtainedforthekineticsofoxidationofkeroseneindilutedconditionsusingjet-stirredreactors(JSR)operatedoveraverywiderangeofconditions:0.2%equivalenceratio%2.5,1%P/atm%40,550%T/K%1300.Thedataconsistedofmolefractionprofilesofstablespecies(reactants,intermediatesandproducts)measuredasafunctionofresidencetimeortemperature,bylowpressuresonicprobesamplingandGCanalyses.ThemostrelevantavailabledataarepresentedinFigs.5–26.

4.2.Surrogates

Severalsurrogatefuelshavebeenusedinordertoproposedetailedchemicalkineticschemesofreason-ablecomplexityfortheoxidationofkerosene.Theyconsistedinitiallyofn-decaneforwhichmanykineticstudies[30–32,35–37,40–46]appearintheliterature.Mostoftheconcentrationprofilesobtainedfromtheoxidationofn-decaneorkeroseneinaJSRwereverysimilar[36],aswerethen-decaneandkeroseneflamestructures[30,32].Unfortunately,thissimplesurrogateshowedpoorpredictionsofbenzeneformationinaJSR[36]andflatflameburnerexperiments[30,32,44].ThesefindingsareillustratedinFig.27.ThehigherconcentrationofbenzeneproducedduringtheoxidationoftheJetA-1fuelwasattributedtotheinitialaromaticfractionpresentinthecommercialfuelthatproducesbenzenebyoxidation.TakingintoaccounttheJetA-1

´retetal.[35]studiedthechemicalcomposition,Gue

oxidationofathree-componentsmodel-fuel(79%

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

O2COH2N2/4H2OCO259

20000.21500T/KMole fraction0.150.110000.0550000.51

1.5z/mm

22.53

000.511.5z/mm

22.530.0025C5H10C6H12C7H14C4H21-C4H8i-C4H80.03C2H40.002Mole fraction0.0250.020.0150.010.0050C2H2C2H6CH40.00150.0015e-4000.511.5z/mm

20.00120.0018e-46e-44e-42e-402.53Mole fraction00.511.5z/mm

22.53AllenePropyneBenzeneMole fraction00.511.5z/mm

22.53Fig.3.Flamestructureunderatmosphericpressureconditions:2.95%ofkeroseneTR0,28.%oxygen,68.41%nitrogeninmol,equivalenceratioof1.7[31].

n-undecane,10%n-propylcyclohexane,11%1,2,4-trimethylbenzene,inmol)atvariableresidencetimeandfixedtemperature,indilutedconditionsusinganatmosphericJSR(Fig.28).Althoughthesedatawerelimited,theyshowed[35]areasonableagreementbetweentheprofilesobtainedfromtheoxidationofthissurrogateandJetA-1forthemainspecies.Cookeetal.[47]studiedthecombustionofasix-componentmodel

60P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

100n-decane/n-propylbenzene90)s/m80

(c /yti70oclev g60Jet A1ninruB50

40300.9

1

1.11.21.31.4

Equivalence ratio

Fig.4.Burningvelocityofkerosene(JetA-1)-airandn-decane/n-propylbenzene(80/20wt)atatmosphericpressureand473K[34].

fuel(10%iso-octane,20%methylcyclohexane,15%m-xylene,30%n-dodecane,5%tetralin,20%n-tetra-decane,inmol)innon-sootingcounterflowdiffusionflames.ThetemperatureprofilesmeasuredatvariabledistancefromthefuelinjectionwerecomparedforJP-8andthesurrogatemixture.Theywerefoundincloseagreement,validatingtheselectedsurrogatemixture.Agostaetal.[48]studiedthelow-temperatureoxidationofthreetwo-componentsmodel-fuels(n-dodecane40%,2,2,4,4,6,8,8-heptamethylnonane60%;

6e-4

C2H45e-4COCH4C2H6n4e-41.3C4H6oitIC4H8car3e-41C4H8F eloM2e-41e-4

0

00.050.10.150.20.25t/s

Fig.5.OxidationofkeroseneinaJSRat1atmand923K(initialconditions:0.1%keroseneTR0,8.25%O2,diluentnitrogen)[35].

5e-4

C2H4CO4e-4

CH4C2H6n1C4H8oit3e-4

carF eloM2e-4

1e-4

000.050.10.150.20.25t/s

Fig.6.OxidationofkeroseneinaJSRat1atmand973K(initialconditions:0.1%keroseneTR0,1.65%O2,diluentnitrogen)[35].

n-dodecane37%,methylcyclohexane63%;n-dodecane51%,a-methylnaphtalene49%,inmol).Theymeasuredthemolefractionsofcarbonmonoxideinthecoolflameregime(600–900K)bywater-cooledprobesamplingandnon-dispersiveIR(Fig.29).Theburningvelocityofn-decane-n-propylbenzene(80/20inweight)/airmixtureswererecentlymeasuredatatmosphericpressure[34]usingaconeflame,extendingtheexistingflamedatabase.ThisstudyshowedthattheburningvelocitiesofkeroseneJetA-1arecomparablebutslightlylowerthanthoseofthissurrogatemixture(Fig.4).

Recently,othersimplesurrogatesweretested.Amongthem,mixturesofn-decaneandn-propyl-benzene[34,39]andofn-decaneand1,2,4-trimethyl-benzene[39]weretestedexperimentallyindiluteconditions.JSRexperimentsperformedontheoxidationofthesesurrogatesat10atmhavebeeninstrumentalinprovidingthedetailsrequestedtodevelopakineticreactionscheme.Theexperimentalset-up[40],consistedofafusedsilicajet-stirredreactorequippedwithanatomizer–vaporizerassemblyoperatingathightemperatures(uptoca.3008C)allowingthevaporizationoftheheaviercomponentsofkerosene.Thisfacilitywasdesignedtoexaminethelow-andhigh-temperaturechemicalprocesseswithoutcomplicationsduetodiffusionorindeterminatereactiontime-zeroresultingfromindeterminatenatureofthemixingprocesswhichcanhappenin‘plug’flowreactors.Thetemperaturerangeofemphasiswas800–1250K,corresponding

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9261

10–310–2O2H2COCO2CH2OMole Fraction10–3Mole Fraction10–4CH4C2H4C2H2C2H6C3H6Allene10–410–510–59002e-41e-410001100T/K

1200130010–69002e-4

1000

1100T/K

12001300

Mole FractionMole Fraction2e-51e-51,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141e-4

2e-51e-5

cy-C5H81,3CPDFuranC6H6Me-C5H7Toluene2e-61e-6900

1000

1100T/K

1200

1300

2e-61e-6

900

1000

1100T/K

1200

1300

Fig.7.OxidationofkeroseneinaJSRat1atmandtZ0.07s(initialconditions:0.07%keroseneTR0,2.31%O2,diluentnitrogen)[38].

CH4C2H4C2H2C2H6C3H6Allene10–210–3Mole Fraction10–4O2H2COCO2CH2OMole Fraction10–310–410–510–59002e-41e-4100011001200T/K

1300140010–69002e-41e-4

1000cy-C5H81,3CPDFuranC6H6Me-C5H7Toluene11001200T/K

13001400Mole FractionMole Fraction2e-51e-51,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H142e-51e-5

2e-61e-6900100011001200T/K

130014002e-61e-6

900100011001200T/K

13001400Fig.8.OxidationofkeroseneinaJSRat1atmandtZ0.07s(initialconditions:0.07%keroseneTR0,1.155%O2,diluentnitrogen)[38].

62P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–210–3Mole Fraction10–4O2H2COCO2CH2OMole Fraction10–310–4CH4C2H4C2H2C2H6C3H6Allene10–510–59002e-41e-4100011001200T/K1300140010–69002e-41e-41000cy-C5H81,3CPDFuranC6H6Me-C5H7Toluene1100T/K120013001400Mole FractionMole Fraction2e-51e-51,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H142e-51e-52e-61e-6900100011001200130014002e-61e-6900100011001200T/K

13001400T/K

Fig.9.OxidationofkeroseneinaJSRat1atmandtZ0.07s(initialconditions:0.07%keroseneTR0,0.77%O2,diluentnitrogen)[38].

10–210–3Mole FractionMole Fraction10–310–4CH4C2H4C2H2C2H6C3H6Allene10–4O2H2COCO2CH2O10–510–59002e-41e-4

100011001200T/K

1300140010–69002e-41e-4

1000cy-C5H81,3CPDFuranC6H6Me-C5H7Toluene11001200T/K

13001400Mole FractionMole Fraction2e-51e-5

1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H142e-51e-5

2e-61e-6

90010001100120013002e-61e-6

90010001100T/K

1200130014001400T/K

Fig.10.OxidationofkeroseneinaJSRat1atmandtZ0.07s(initialconditions:0.07%keroseneTR0,0.5775%O2,diluentnitrogen)[38].

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9263

10–310–2Mole Fraction10–410–3Mole FractionCH4C2H4C2H2C2H6C3H610–4O2COCO210–510–57002e-41e-4

8009001000T/K

1100120010–67002e-4

8009001000T/K

11001200Mole Fraction2e-51e-5

Mole Fraction1C4H81C5H101C6H121C7H141C8H181e-4

C6H6Tolueneo-Xylenem+p-Xylene1,2,4TMB2e-51e-5

2e-61e-6

7008009001000T/K

110012002e-61e-6

7008009001000T/K

11001200Fig.11.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.1%keroseneTR0,3.3%O2,diluentnitrogen)[36].

10–310–2Mole FractionMole Fraction10–410

–3

CH4C2H4C2H2C2H6C3H6Allene10–4

O2H2COCO2CH2O10–510–5

7002e-41e-4

8009001000T/K

1100120010–67002e-48009001000T/K

11001200Mole FractionMole Fraction1C4H81C5H101C6H121C7H141C8H181e-4C6H6Tolueneo-Xylenem+p-Xylene1,2,4TMB2e-51e-5

2e-51e-52e-61e-6

7008009001000T/K

110012002e-61e-67008009001000T/K

11001200Fig.12.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.1%keroseneTR0,1.65%O2,diluentnitrogen)[36].

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–310–2Mole FractionMole Fraction10–410

–3

CH4C2H4C2H2C2H6C3H6Allene10–4

O2H2COCO2CH2O10–510–5

7008009001000110012001300T/K

10–67008009001000110012001300T/K

2e-4

2e-41e-41C4H81C5H101C6H121C7H141C8H181e-4

Mole Fraction2e-51e-5Mole Fraction2e-51e-5

C6H6Tolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-6700

800

9001000110012001300

T/K

2e-61e-6

700

800

9001000110012001300

T/K

Fig.13.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.1%keroseneTR0,1.1%O2,diluentnitrogen)[36].

tothatofthebeginningreactionzoneinflameswheretheprimaryfueldepletionchemistryoccurs.Alargesetofdataconsistingofmolefractionprofilesasafunctionofvariedexperimentalconditions(temperature,initialconcentration,equivalenceratio,f,meanresidencetime,t)wasobtained.Thereactants,stableintermediatesandproductsweremeasuredaftersonicquartzprobesamplingbygaschromatography(GC)usingseveraldetectors(Flameionizationdetector,FID;thermalconductivitydetec-tor,TCD;massspectrometry,MS).TheGCanalysesinvolvedtheuseoffourGCs.OneGCoperatingwithnitrogenascarriergasandTCDdetectionwasusedtomeasurehydrogen.TheotherGCsusedheliumascarriergas.Amulticolumnandmulti-detectorGCwasusedtomeasurepermanentgasesandsimplespecies(O2,CO,CO2,CH2O,aldehydes).AnotherGCequippedwithaAl2O3–KClcolumnandanFIDdetectorwasusedtomeasurehydro-carbonsuptoC7whereashydrocarbonsOC5wereanalyzedusingaGC–MSoperatingwithaDB5-mscolumn.PAHwereanalyzedonlinebymeansofaGC/MS:ThesampleisdeliveredtothesamplingloopoftheGCviaadeactivatedtransferheatedline(3008C).TheresultsofthisstudyarereportedinFigs.30–38.

ThecomparisonoftheexperimentalprofilesobtainedfortheoxidationofJetA-1andthesurrogatesshowsthatthetestedsurrogatesdonotfullyrepresenttheoxidationofJetA-1althoughacloseagreementisobservedforalargevarietyofspecies(Figs.39and40).Themeasuredmolefractionprofilesforhydrogen,CO,CO2,CH2O,CH4,C2H4,C2H2,C3H6,1-C4H8,1,3-C4H6,and1-C5H10areverysimilarforthevarioussurrogatesusedandforJetA-1.Onecaninterprettheseresultsbysimplysayingthatn-decanerepresentswellthen-alkanefractionofJetA-1,confirmingearlyfindings[31,36].Themaindifferencesappearfor1,3-cyclopentadiene,benzene,toluene,andstyrene.There,theexperimentsshowthatthesurrogatesproduceless1,3-cyclopentadiene,lessbenzene,andlesstoluenethatJetA-1does.Regardingtheformationofstyrene,thesurrogatemixture

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–310–2

65

Mole Fraction10–3

10–4

O2H2COCO2CH2OMole Fraction10–4CH4C2H4C2H2C2H6C3H610–510–5

500

600700

800T/K

90010001100

10–65002e-4600700

800T/K

90010001100

2e-5Mole Fraction1e-5

Mole Fraction1,3C4H61C4H81C5H101C6H121C7H141C8H181e-4C6H6Tolueneo-Xylenem+p-Xylene1,2,4TMB2e-51e-52e-61e-6

5002e-6600700800T/K900100011002e-41e-4MeOHOxiranCH3CHOC3H6OC2H5CHOn-C11H24n-C12H261e-6500600700800T/K90010001100Mole Fraction2e-51e-52e-61e-6500

600

700

800T/K

900

10001100

Fig.14.OxidationofkeroseneinaJSRat10atmandtZ1.0s(initialconditions:0.1%keroseneTR0,1.65%O2,diluentnitrogen)[37].

containing1,2,4-trimethylbenzeneproducestoolittlestyrenewhereasthesurrogatescontainingn-propyl-benzeneproducetoomuchstyrene.Thisisduetothefactthatn-propylbenzeneoxidationyieldsfairamountsofstyrenebyoxidationofthen-propylgroup[55],whereas1,2,4-trimethylbenzenedoesnotsinceithasonlymethylgroups:

C6H5–C3H701-phenyl-2KpropylCH1-Phenyl-2-propyl52-phenyl-1-propyl2-Phenyl-1-propyl0styreneCCH3C6H5–C3H701-phenyl-1-propylCH

66P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

CH4C2H4C2H2C2H6C3H6Allene10–310–2Mole FractionMole Fraction10–410

–310–4O2H2COCO2CH2O90010001100T/K1200130010–510–58002e-5

10–68002e-590010001100T/K120013001e-5Mole Fraction3e-62e-6

Mole Fraction1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141C8H181e-51,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB3e-62e-61e-6

80090010001100T/K

120013001e-680090010001100T/K

12001300Fig.15.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.067%JetA-1,4.422%O2,diluentnitrogen)[39].

10–310–2Mole FractionMole Fraction10–410

–3CH4C2H4C2H2C2H6C3H6Allene10–4O2H2COCO2CH2O90010001100T/K1200130010–510–580010–68009001000110012001300T/K1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141C8H181,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB2e-5Mole Fraction1e-52e-5Mole Fraction1e-52e-61e-68002e-61e-680090010001100T/K

120013009001000T/K

110012001300Fig.16.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.067%JetA-1,1.474%O2,diluentnitrogen)[39].

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

CH4C2H4C2H2C2H6C3H6Allene67

10–310–2Mole Fraction10–4Mole Fraction10–3O2H2COCO2CH2O80090010001100T/K1200130010–410–510–510–680090010001100T/K120013002e-5Mole Fraction1e-5Mole Fraction1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141C8H182e-51e-51,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-68002e-61e-680090010001100T/K

1200130090010001100T/K

12001300Fig.17.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.067%JetA-1,1.1055%O2,diluentnitrogen)[39].

10–2

10–3Mole FractionMole Fraction10–3

10–4CH4C2H4C2H2C2H6C3H6Allene10–4

O2H2COCO2CH2O80090010001100T/K1200130010–510–510–61e-480090010001100T/K120013001e-41,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141C8H18Mole Fraction1e-5Mole Fraction2e-52e-51e-51,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-6800

90010001100

T/K

1200

1300

2e-61e-6800

900

10001100

T/K

1200

1300

Fig.18.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.067%JetA-1,0.737%O2,diluentnitrogen)[39].

68P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–210–3Mole FractionMole Fraction10–310–4CH4C2H4C2H2C2H6C3H6Allene10–4O2H2COCO2CH2O90010001100T/K

120013001,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141C8H1810–510–58001e-4

10–68001e-490010001100T/K

12001300Mole FractionMole Fraction2e-51e-5

2e-51e-51,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-6

80090010001100T/K

120013002e-61e-680090010001100T/K

12001300Fig.19.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.067%JetA-1,0.5527%O2,diluentnitrogen)[39].

10–2CH4C2H4C2H2C2H6C3H610–4Mole FractionMole Fraction10

–310–4O2H2COCO2CH2O8009001000T/K1100120010–510–57002e-5

10–67008009001000T/K110012001e-5MoleFractionMole Fraction1C4H81C5H101C6H121C7H141C8H182e-51e-53e-62e-6

C6H6Tolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-6

7008009001000T/K

110012007008009001000T/K

11001200Fig.20.OxidationofkeroseneinaJSRat20atmandtZ1.0s(initialconditions:0.05%keroseneTR0,0.825%O2,diluentnitrogen)[39].

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

CH4C2H4C2H2C2H6C3H6Allene69

10–210–4Mole FractionMole Fraction10–310–4O2H2COCO2CH2O8009001000110012001300T/K

1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H1410–510–52e-510–61e-58009001000110012001300T/K

1,3CPDC6H6Tolueneo-Xylenem+p-Xylene1,2,4TMB1e-5Mole FractionMole Fraction4e-63e-62e-63e-62e-61e-68009001000110012001300T/K

1e-68009001000110012001300T/K

Fig.21.OxidationofkeroseneinaJSRat20atmandtZ1.0s(initialconditions:0.05%JetA-1,1.1%O2,diluentnitrogen)[39].

10–210–4Mole FractionMole Fraction10–3CH4C2H4C2H2C2H6C3H610–4O2H2COCO2CH2O80090010001100T/K

1200130010–510–52e-5

10–62e-5

800900

10001100T/K

12001300

1e-5Mole FractionMole Fraction1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141e-5

3e-62e-6

3e-62e-6

1,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB80090010001100T/K

120013001e-6

800900

10001100T/K

12001300

1e-6

Fig.22.OxidationofkeroseneinaJSRat20atmandtZ1.0s(initialconditions:0.05%JetA-1,0.825%O2,diluentnitrogen)[39].

70P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–210–3CH4C2H4C2H2C2H6C3H6AlleneMole Fraction10–4O2H2COCO2CH2O800900100011001200T/K

1300Mole Fraction10–310–410–510–52e-510–6800900100011001200T/K

13001e-5Mole FractionMole Fraction1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H142e-51e-53e-62e-61,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-61e-6800900100011001200T/K

1300800900100011001200T/K

1300Fig.23.OxidationofkeroseneinaJSRat20atmandtZ1.0s(initialconditions:0.05%JetA-1,0.55%O2,diluentnitrogen)[39].

10–2

10–3CH4C2H4C2H2C2H6C3H6AlleneMole Fraction10–3

Mole Fraction10–410–4

O2H2COCO2CH2O80090010001100T/K

1200130010–510–510–61e-4

80090010001100T/K

120013002e-51e-5Mole FractionMole Fraction1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H142e-51e-5

1,3CPDC6H6StyreneTolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-62e-6

80090010001100T/K

120013001e-6

80090010001100T/K

12001300Fig.24.OxidationofkeroseneinaJSRat20atmandtZ1.0s(initialconditions:0.05%JetA-1,1.1%O2,diluentnitrogen)[39].

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–2

10–3

71

10–3Mole FractionMole Fraction10–4

CH4C2H4C2H2C2H6C3H6Allene10–4

O2H2COCO2CH2O80090010001100T/K

1200130010–5

10–510–62e-480090010001100T/K

120013002e-51e-5

Mole FractionMole Fraction1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H141e-42e-51e-51,3CPDC6H6Me-C5H7Tolueneo-Xylenem+p-Xylene1,2,4TMB2e-61e-6

2e-680090010001100T/K

120013001e-680090010001100T/K

12001300Fig.25.OxidationofkeroseneinaJSRat20atmandtZ1.0s(initialconditions:0.05%JetA-1,0.33%O2,diluentnitrogen)[39].

1-Phenyl-1-propyl0styreneCCH3C6H5–C3H703-phenyl-1-propylCH3-Phenyl-1-propyl0C6H5–CH2CC2H4C6H5–CH2CCH30C6H5–C2H5C6H5KC2H502-phenyl-1-ethylCH2-Phenyl-1-ethyl0styreneCH

ThestructuresofthespeciesinvolvedintheseequationsaregiveninTable4.

Fig.40showsthattheincreaseintheinitialmolefractionofn-propylbenzeneinthesurrogatemixtureonlymoderatelychangestheresultsbutthoseofthearomatichydrocarbons(benzene,toluene,andstyrene)forwhichthemaximummolefractionsincreasewithincreasinginitialmolefractionofn-propylbenzene.Theseresultsdemonstratethatitisdifficulttorepresentthenon-alkanefractionofJetA-1byasingle

componentsuchasn-propylbenzeneor1,2,4-trimethyl-benzene[38].

5.LiteraturesurveyofthechemicalkineticmodelingofthecombustionofJetA-1/JP-8Table5summariesthekineticmodelsproposedforsimulatingthecombustionofkeroseneinvariousconditions.ThesimplestpublishedkineticmodelforthecombustionofkeroseneistheonestepreactionmechanismwithaglobalrateexpressionusedbyNajarandGoodger[50]tomodeltheoxidationofthisfuel.Sucharateexpressionwasalsoused,afteraslightmodification,byAlyandSalem[51]topredictpremixedlaminarflamecharacteristicsofacommercialkerosenefuel.

Inanapproachtoelaboratemorerefinedkinetic

´retetal.[35]usedquasi-globalreactionmodels,Gue

mechanismstosimulatetheconcentrationprofilesofthemainproductsoftheoxidationofaTR0(JP-8)keroseneinajet-stirredreactoratatmosphericpressure.Thesemechanismsinvolvedaglobalmolecular

72P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–22e-41e-410–3CH4C2H4C2H2C2H6C3H6Mole FractionMole Fraction2e-51e-510–4O2H2COCO2CH2O8009001000T/K110012002e-61e-67001e-58009001000T/K1100120010–57001e-51C4H81C5H101C6H12Mole Fraction4e-63e-62e-6Mole Fraction4e-63e-62e-6C6H6o-Xylenem+p-Xylene1,2,4TMB1e-6700

800900

1000T/K

11001200

1e-6700

800900

1000T/K

11001200

Fig.26.OxidationofkeroseneinaJSRat40atmandtZ2.0s(initialconditions:0.025%keroseneTR0,0.4125%O2,diluentnitrogen)[36].

reactionfortheoxidationoftheinitialfuelmoleculesandadetailedmechanismfortheoxidationofthesmallerintermediatehydrocarbons.Suchasemi-globalmechanismwasusedtomodeltheoxidationofasurrogatemixturecontainingn-undecane,n-propylcy-clohexaneand1,2,4-trimethylbenzene.ItwasshownthattheexperimentalconcentrationprofilesofthemainspeciesmeasuredduringtheoxidationofthissurrogateandofaTR0(JP-8)kerosenewereverysimilar.Thecompositionofthesurrogatemixture,whichwasbasedonabroadchemicalanalysisofthekerosene,wasthefollowing(in%bymass):79%forthealkane,10%forthecycloalkane,and11%forthearomatic.

Later,theexperimentalinvestigationsinanatmos-phericjet-stirredreactorwereextendedton-decane,andthemajorproductsoftheoxidationofthisalkanewereshowntofollowthesameevolutionasthoseofkerosene[52].Adetailedmechanismdescribingtheoxidationofn-decanewasdeveloped.Itwasabletopredicttheexperimentaldataobtainedfortheoxidationofn-decaneandkerosene[52]withreasonableaccuracy.

FurtheroxidationexperimentsofkeroseneTR0andofn-decanewereperformedbyDagautetal.[36,37,40]inajet-stirredreactoroperatingathigherpressure(10–40atm)overanextendedtemperaturerange(550–1550K).Theseexperimentsconfirmedthestrongkineticsimilaritybetweentheoxidationofn-decaneandkeroseneTR0.Thedetailedmechanismdevelopedpreviouslyfortheoxidationofn-decaneintheintermediateandhightemperaturerange(above800K)wasadaptedtothepressurerange10–40atmgivingageneralgoodagreementwithexperimentaldataobtainedforn-decaneoxidation,andalsoforthemajorspeciesofkeroseneoxidation[36–40].

Alltheseresultsindicatethatthealkaneportionofkeroseneisthemostreactive.Itsrelativelyfastoxidationproducesthenecessaryactivespeciesfortheoxidationofthefuelmixture.Theotherchemicalfamiliesdonothaveapronouncedeffectontheoveralloxidationkineticsofthiscomplexmixture.However,thearomaticandthenaphtenicfractionofkerosenehaveafewspecificoxidationproducts:inparticular,toluene,xylenes,andtrimethylbenzeneswerenotfoundintheproductsoftheoxidationofn-decaneinajet-stirredreactor[36,37,40],indicatingthattheyaretheproductsoftheoxidationofthealkylbenzenefamilyin

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

(a)0.0025

Jet-A1n-Decane(b)0.0012

0.001C6H6 Mole Fraction8e-46e-44e-42e-40

Jet-A1n-Decane73

0.002C6H6 Mole Fraction0.0015

0.001

5e-4

0

00.51z/cm(c)6e-5

5e-5C6H6 Mole Fraction4e-53e-52e-51e-508001.5200.511.5z/mm

22.53Jet-A1n-Decane9001000T/K

11001200Fig.27.BenzeneexperimentalprofilesobtainedfromtheoxidationofJetA-1andn-decane[32,44]:(a)flatflameburnerresultsobtainedatlow-pressure(6kPa,FZ2.2,flamediameter9.5cm,gasvelocityatburnerexit24cm/sat298Kand1atm;8.0%ofn-decane,56.4%ofoxygen,35.6%ofargon;7.6%ofkerosene,56.8%ofoxygen,35.6%ofargon),(b)flatflameburnerresults[44]obtainedatatmosphericpressure(101kPa,FZ1.7,flamediameter2.5cm,gasvelocityatburnerexit7.3cm/sat298Kand1atm;3.2%ofn-decane,28.6%ofoxygen,68.2%ofargon;3.0%ofkerosene,28.6%ofoxygen,68.2%ofargon),(c)JSRresults[36]obtainedfortheoxidationof0.1%n-decane(1.033%oxygen,balancenitrogen)and0.1%kerosene(1.1%oxygen,balancenitrogen)at1MPa,FZ1.5,tZ0.5s.

0.00120.001Mole Fraction8e-46e-44e-42e-400C11H24124TMBC3H7-C6H11CO/5CO2/5Mole Fraction0.0015C2H4CH4C3H61,3C4H61C4H80.0015e-400.050.1t/s

0.150.20.2500.050.1t/s

0.150.20.25Fig.28.OxidationofakerosenesurrogatemixtureinaJSRat1atmand1023K(initialconditions:7900ppmvn-C11H24,1000ppmvn-propylbenzene,1100ppmv1,2,4-trimethylbenzene,7.85%O2,diluentnitrogen)[35].

74P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

12001000800CO in ppm6004002000600CO in ppm1500M1-1M1-22500M2-1M2-220001000500650700T/K

75012001000800CO in ppm60040020006008000600650700T/K

750800M3-1M3-2650700T/K

750800Fig.29.COproductionfromtheoxidationinaflowreactorat8atm,fZ0.3,120msofsurrogatemixtures:M1-1,40%n-dodecaneand60%2,2,4,4,6,8,8-heptamethylnonane,870ppmvoffuel;M2-1,37%n-dodecaneand63%methylcyclohexane,1516ppmvoffuel;M2-2,37%n-dodecaneand63%methylcyclohexane,1011ppmvoffuel;M3-1,51%n-dodecaneand49%a-methylnaphtalene,1220ppmvoffuel;M3-2,51%n-dodecaneand49%a-methylnaphtalene,814ppmvoffuel)[48].

kerosene.Itwasalsoobservedthattheconcentrationofbenzenemeasuredduringtheoxidationofkerosenewassignificantlyhigherthanthatfoundamongtheproductsofn-decane[36,37,40].Thisisnotsurprisingsincebenzeneisoneoftheproductsoftheoxidationoftoluene,xylenesandhigheralkylbenzenes[53–55],whichconstitutethearomaticfractionofkerosene.Studiesperformedonrichpremixedflamesofn-decaneandTR0kerosene,stabilizedonaflatflameburneratpressurelower[30]orequalto1atm[31],showedsimilarresults:aclosesimilaritywasobservedforthemolefractionprofilesofmajorspeciesandmainintermediatesmeasuredinbothflames,exceptforbenzenewhichwasfoundatamuchhigherconcentrationinkeroseneflames[32].TheseexperimentalobservationsleadVovelleetal.[30]touseamechanisminvolvinganaromatic(toluene)inadditionton-decanetomodeltheirlow-pressurekeroseneflame.´etal.[31]wasLater,the1atmrichflameofDoute

modeledbyLindstedtandMaurice[56]usingadetailedmechanismforakerosenemodelfuelcontainingn-decane,torepresenttheparaffincom-ponent,andvariousaromaticcomponents.Areason-ableagreementbetweenthemodelingandthedatawasobtainedbytheauthorsforthemajorspecies.Thedifferentsurrogatefuelblendsusedinthemodelingweremadeofmol%n-decaneand11mol%benzene,ortoluene,orethylbenzeneorethylbenzene/naphthalene.Thismodelingstudyshowedthatbenzenecannotrepresentthearomaticcomponentinkerosenefuelsandthattheinclusionofahigheraromaticisnecessary.Surrogatesincorporat-ingtolueneorethylbenzenecouldreproducewithagoodaccuracytheconcentrationsofbenzeneinthe

´etal.[31].kerosenelaminarflameofDoute

Wang[57]proposedaquasi-globalreactionschemeforkerosenecombustionusingamodel-fuelofglobal

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

CH4C2H4C2H2C2H6C3H6Propyne75

10–210–310–3Mole FractionO2H2COCO2CH2Odecane124TMB90010001100T/K12001300Mole Fraction10–410–410–510–510–68001e-4

10–68001e-590010001100T/K12001300Mole FractionMole Fraction2e-51e-5

1,3C4H61C4H81C5H101C6H121C7H141C8H184e-63e-62e-61,3CPDC6H6Tolueneo-Xylenem+p-Xylene2e-61e-6

8001e-680090010001100T/K

1200130090010001100T/K

12001300Fig.30.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:600ppmvn-C10H22,150ppmv1,2,4-trimethylbenzene,1.48%O2,diluentnitrogen)[39].

10–210–310–3Mole FractionO2H2COCO2CH2Odecane124TMB80090010001100T/K12001300Mole Fraction10–4CH4C2H4C2H2C2H6C3H6Propyne10–410–510–510–61e-4

10–68002e-590010001100T/K12001300Mole Fraction1e-5

Mole Fraction2e-5

1,3C4H61C4H81C5H101C6H121C7H141C8H181e-51,3CPDC6H6Tolueneo-Xylenem+p-Xylene3e-62e-62e-61e-6

8001e-680090010001100T/K

1200130090010001100T/K

12001300Fig.31.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:600ppmvn-C10H22,150ppmv1,2,4-trimethylbenzene,1.11%O2,diluentnitrogen)[39].

76P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–2CH4C2H4C2H2C2H6C3H6Propyne10–310–3Mole FractionMole FractionO2H2COCO2CH2Odecane124TMB8009001000110012001300T/K1,3C4H61C4H81C5H101C6H121C7H141C8H1810–410–410–510–510–61e-4

10–68009001000110012001300T/K2e-5Mole Fraction1e-5Mole Fraction2e-51e-5

1,3CPDC6H6Tolueneo-Xylenem+p-Xylene2e-61e-6

8009001000110012001300T/K

2e-61e-68009001000110012001300T/K

Fig.32.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:600ppmvn-C10H22,150ppmv1,2,4-trimethylbenzene,0.74%O2,diluentnitrogen)[39].

10–210–310–3Mole FractionO2H2COCO2CH2Odecane124TMBCH4C2H4C2H2C2H6C3H6propyneMole Fraction10–410–410–510–510–68002e-41e-4Mole Fraction9001000110012001300T/K

1,3C4H61C4H81C5H101C6H121C7H141C8H1810–68009001000110012001300T/K

1,3CPDC6H6Tolueneo-Xylenem+p-Xylene2e-5Mole Fraction1e-52e-51e-52e-61e-68009001000110012001300T/K

2e-61e-68009001000110012001300T/K

Fig.33.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:600ppmvn-C10H22,150ppmv1,2,4-trimethylbenzene,0.555%O2,diluentnitrogen)[39].

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9277

10–210–310–3Mole Fraction10–410

–5O2H2COCO2CH2OdecanePrC6H5Mole Fraction10–4CH4C2H4C2H2C2H6C3H6propyne10–510–61e-4

8009001000T/K1100120010–68009001000T/K11001200Mole FractionMole Fraction2e-51e-5

1,3C4H61C4H81C5H101C6H121C7H141C8H182e-51e-51,3CPDC6H6TolueneStyreneC6H5CHOPhenol2e-61e-6

2e-61e-68009001000T/K

110012008009001000T/K

11001200Fig.34.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:579ppmvn-C10H22,171ppmvn-propylbenzene,1.103%O2,diluentnitrogen)[39].

formulaC12H24representingamixtureofaparaffinandacycloalkane.Itincludedglobalstepsforsootformation(onereaction)andoxidation(tworeactions),twoglobalreactionsfortheoxidationofthefueltoCOandH2(onefortheparaffinfractionandoneforthecycloalkane),andaH2–CO–O2reactionsub-mechan-ism(12reactions).ThekineticschemewasusedinaCFDcodetomodelthecombustioninkerosene-fueledrocketengines.

Inanothercomputationalstudy,Pattersonetal.[58]usedasemi-detailedmechanismforthecombustionofamixtureof%n-decaneand11%toluenetoreproducethejet-stirredreactordataat10and40atm[37]andthestructureofthe1atmfuel-richflame[31].Theinitialstepsintheirn-decanemechanisminvolve14globalreactionstobreakdowntheparentmoleculeintosmalleralkylradicalsandolefins.Thecompletemechanismgivesareasonableagreementbetweencomputationandexperimentaldatafrombothexperimentsandwasalsousedtopredictthestructureofacounterflowkerosene/airdiffusionflame[58].Riesmeieretal.[59]modeledthecombustionandpollutantsformation,nitrogenoxidesandsoot,inagasturbinecombustionchamberusingaflameletmodelincludingdetailedkinetics.Themodel-fuelconsistedofamixtureofn-decane(80%wt)and1,2,4-trimethylbenzene(20%wt).Themodelwasinitiallyvalidatedagainsttheflamestructuresof

´etal.[31].Doute

However,severalrecentmodelingstudiesoftheoxidationofkeroseneaviationfuels[7,38,60]haveincludedcycloalkanesinthejetA-1/JP-8surrogatetorepresentthenaphtenicfamilyinthisfuel.Thisclassofhydrocarbonsisprobablyinvolvedintheformationofsootsincethesootingtendencyofcycloalkanesisintermediatebetweenthatofalkanesandmonoaro-matics[61].CycloalkanesarealsosuspectedtoincreasePAHandsootemissionsindieselengines,andfinallycyclohexanehasbeenshowntoproducesignificantamountsofairtoxics,namely1,3-butadieneandbenzenewithinagasolinesinglecylinderengine[62].Inordertodevelopchemicalmechanismsfortheoxidationofthesehydrocarbons,twocycloalkanes

78P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–2

10–310–3Mole Fraction10–4

10–5

O2H2COCO2CH2OdecanePrC6H5Mole Fraction10–4CH4C2H4C2H2C2H6C3H6propyne10–510–6

8009001000T/K1100120010–62e-48009001000T/K110012001,3CPDC6H6TolueneStyreneC6H5CHOPhenol2e-5Mole Fraction1e-5

Mole Fraction1,3C4H61C4H81C5H101C6H121C7H141C8H181e-42e-51e-52e-61e-6

2e-68009001000T/K

110012001e-68009001000T/K

11001200Fig.35.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:504ppmvn-C10H22,256ppmvn-propylbenzene,1.45%O2,diluentnitrogen)[39].

werestudiedinajet-stirredreactoratvariouspressuresrangingfrom1to10atm:cyclohexane[63,]andn-propylcyclohexane[65].Detailedchemicalmechan-ismshavebeendevelopedandrefinedtoreproducetheseexperimentaldata[38,63–65].

Inafirststudyusingdetailedmechanismstomodeltheoxidationofathreecomponentjet-fuelsurrogateinajet-stirredreactor,amixtureof78%n-decane,9.8%cyclohexaneand12.2%toluenebyvolumewasused[60].Comparisonwiththepreviousmodelingstudybasedonasinglecomponent,n-decane[37]showedthattheinclusionofacycloalkaneandanaromaticimprovedconsiderablythepredictionofbenzeneintheoxidationofkeroseneTR0from10to40atmandforequivalenceratiosbetween0.5and2.

AnimprovementoftheformulationofasurrogatemixtureforkeroseneTR0wasmorerecentlyprovidedbythemodelingstudyofDagaut[38].Heusedasurrogatemixtureof74%n-decane,11%n-propylcy-clohexaneand15%n-propylbenzenebyvolumetoreproducetheoxidationofkeroseneTR0inajet-stirredreactoratatmosphericpressure.Propylcyclohexaneandpropylbenzenearemorerepresentativeofthenaphe-tenicandaromaticfamilyofkerosenethancyclohexaneandtolueneusedbefore[60].Theneatoxidationofthesehydrocarbonshasbeenstudiedexperimentally[55,65]inajet-stirredreactoranddetailedmechanismshavebeenelaboratedtopredicttheexperimentaldata[38,55,65].Themechanismestablishedfortheternaryblendgaveagoodagreementbetweenthecomputedandtheexperimentalmolefractionsofmostofthespecies,includingbenzene,tolueneand1,3-cyclopen-tadiene[38].

Violietal.[7],havealsoformulatedaJP-8surrogatecontainingacycloalkaneinadditiontoalkanesandaromaticstoreproducethestructureoftheflameof

´etal.[31].Thissurrogatecontains73.5%Doute

n-dodecane,5.5%iso-octane,10%methylcyclohexane,1%benzeneand10%toluenebyvolumeandfitsreasonablywelltheboiling-pointcurveofacommer-cialJP-8kerosene.Thecombustionofthismixturewas

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9279

10–210–310–3Mole FractionO2H2COCO2CH2OdecanePrC6H580090010001100T/K12001300Mole Fraction10–4CH4C2H4C2H2C2H6C3H6propyne10–410–510

–510–610–68002e-490010001100T/K120013002e-5Mole Fraction1e-5Mole Fraction1,3C4H61C4H81C5H101C6H121C7H141C8H181e-42e-51e-5cy-C5H81,3CPDC6H6TolueneStyreneC6H5CHOPhenol2e-61e-62e-680090010001100T/K

120013001e-680090010001100T/K

12001300Fig.36.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:504ppmvn-C10H22,256ppmvn-propylbenzene,1.09%O2,diluentnitrogen)[39].

modeledusingasemi-detailedkineticschemeandthecomputedprofilesfittheexperimentalresultswithaprecisioncompatiblewiththeexperimentaluncertain-ties[7].

Afour-speciessurrogatemixturewasusedbyMontgomeryetal.[66]forthevalidationofdetailedandreducedchemicalkineticmechanismsforJP-8combustionbasedontheschemeof[36,38].Thismixturecontainsbymole32.6%n-decane,34.7%n-dodecane,16.7%methylcyclohexane,and16.0%n-butylbenzene.ThereducedmechanismgeneratedinthatstudyreproducesreasonablyignitiondelaymeasurementsforJP-8.

Inamorerecentstudy,Cookeetal.[47]studiedexperimentallyandcomputationallycounterflowdiffusionflamesusingJP-8,theJP-8surrogate2ofViolietal.[7](seeTable2),andindividualcomponentsofthissurrogate.GoodagreementwasobtainedbetweenpredictedandmeasuredtemperatureprofilesandextinctionlimitsinsurrogateandJP-8flames.InadditiontothesurrogatesproposedrecentlybyViolietal.[7]andMontgomeryetal.[66],Agostaetal.[48]haveselectedthefollowingpossiblereferencecomponentsforJP-8inthefollowingconcentrations(involume):n-dodecane26%,2,2,4,4,6,8,8-heptamethyl-nonane36%,methylcyclohexane14%,decalin6%anda-methylnaphtalene18%.Theyhavestudiedexper-imentallytheoxidationofthesecomponentsandofseveralbinarymixturesinapressurizedflowreactor.Semi-detailedorlumpedkineticmodelswereusedtosimulatetheoxidationofpurecomponentsandgeneralagreementwasfoundwiththeexperimentalmeasurements.

Wenetal.[67]modeledtheformationofsootfromkeroseneflamesintheexperimentalconditionsof[33]inconfinedco-flowingkerosene/airjetflameconfiguration.Theturbulentflamewascontainedwithinaborosilicateglasstubeof155mmdiameter,mountedinapressure-resistanthousing.Theburnerconsistedofa1.5mmdiametercylindricalnozzle,surroundedbyacoaxialannulus,0.25mmwide,onwhichisburntarichethylene/oxygenlaminarpremixedflametorim-stabilizetheturbulentkero-senejetflame.AkeroseneAVTURhavingaH/C

80P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–210–310–3O2H2COCO2CH2OdecanePrC6H5Mole FractionMole Fraction10–4CH4C2H4C2H2C2H6C3H6propyne10–410–510–510–61e-4

80090010001100T/K1200130010–62e-480090010001100T/K

12001300Mole FractionMole Fraction2e-51e-5

1,3C4H61C4H81C5H101C6H121C7H141C8H181e-42e-51e-51,3CPDC6H6TolueneStyreneC6H5CHOPhenol80090010001100T/K

120013002e-61e-6

2e-680090010001100T/K120013001e-6Fig.37.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:504ppmvn-C10H22,256ppmvn-propylbenzene,0.73%O2,diluentnitrogen)[39].

10–2

10–310–3

O2H2COCO2CH2OdecanePrC6H5Mole FractionMole Fraction10–4CH4C2H4C2H2C2H6C3H6propyne10–4

10–5

10–510–61e-4800900100011001200T/K130010–62e-4800900100011001200T/K1300Mole FractionMole Fraction2e-51e-51,3C4H61C4H81C5H101C6H121C7H141C8H181e-42e-51e-51,3CPDC6H6TolueneStyreneC6H5CHOPhenol2e-61e-6800900100011001200T/K

13002e-61e-6800900100011001200T/K

1300Fig.38.OxidationofakerosenesurrogatemixtureinaJSRat10atmandtZ0.5s(initialconditions:504ppmvn-C10H22,256ppmvn-propylbenzene,0.%O2,diluentnitrogen)[39].

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9281

10–210–3Mole Fraction10–4O2H2COCO2CH2O8009001000T/K

110012001300Mole Fraction10–310–4CH4C2H4C2H2C2H6C3H610–510–510–68009001000T/K

1100120013001e-4

1,3C4H61C4H81C5H10Mole FractionMole Fraction2e-51e-5

2e-51e-5

1,3CPDC6H62e-61e-6

2e-61e-6

80090010001100T/K

120013008009001000T/K

110012001300TolueneStyrene10–5Mole Fraction10–610–78009001000T/K

110012001300Fig.39.ComparisonoftheoxidationofthreefuelsinaJSRat10atm,fZ1,andtZ0.5s(initialconditions:670ppmvJetA-1:filledblacksymbols;579ppmvn-C10H22and171ppmvn-propylbenzene:filledgreysymbols;600ppmvn-C10H22and150ppmv1,2,4-trimethylbenzene:opensymbols;diluentnitrogen)[39].

ratioof0.51,encompassing14%Hbymassand20%aromaticcontentbyvolumewasused.Threekeyscalarvariables,thesootvolumefraction,thetemperature,andthemixturefractionweremeasured.Usingthedetailedchemicalschemeof[38],Wenetal.modeledthesevariables.Theirmodelfuelwasamixtureof20%tolueneand80%n-decanebyvolume(H/Cratioof0.49).

Lucheetal.[69]usedanearlyversionofthedetailedkineticschemeof[38]involving134species

82P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

10–210–3

Mole Fraction10–3

O2H2COCO2CH2O900

10001100

T/T/K

1200

1300

Mole Fraction10–4

CH4C2H4C2H2C2H2C3H610–410–5

10–5

80010–6

800

900

1000110012001300

T/K

1e–4

1,3C4H61C4H841C5H10Mole Fraction2e–51e–5

MoleFraction2e–51e–5

1,3CPD1,C6H62e–61e–6

800

2e–61e–6

800

900

10001100

T/K

1200

1300

900

1000110012001300

T/K

10–5Mole FractionTolueneStyren10–610–7800

900

10001100

T/K

12001300

Fig.40.ComparisonoftheoxidationofthreefuelsinaJSRat10atm,fZ1,andtZ0.5s(initialconditions:670ppmvJetA-1:filledblacksymbols;579ppmvn-C10H22and171ppmvn-propylbenzene:filledgreysymbols;504ppmvn-C10H22and256ppmvn-propylbenzene:opensymbols;diluentnitrogen)[39].

and3493reactionstoderiveaskeletalkineticmechanism(134speciesand1220reactions)andtworeducedkineticschemes(involving40or33species)tosimulatethecombustionofkeroseneinaJSR.Elliottetal.[70,71]alsoproposedanoptimizedreducedkineticschemetosimulatekerosenecombus-tioninflamesandJSR.Thedegreeofagreementachievedbytheauthorsusingthisschemeissimilar

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

83

Table4

SpeciesandtheirstructureSpeciesFormula

n-Propylbenzene1-Phenyl-2-propyl

HC2-Phenyl-1-propyl

CH21-Phenyl-1-propyl

HC3-Phenyl-1-propyl

CH2Styrene

Benzyl,C6H5-CH2CH2Ethylbenzene,C6H5-C2H52-Phenyl-1-ethyl

CH2tothatobtainedusingtheschemeofKyneetal.[72](167reactions,63species).

Mawidetal.[73]studiedtheeffectofthecompositionofthemodel-fuelonthemodelpredictions(1330reversiblereactionsvs.202species).Twomodel-fuelswereused:(i)afour-componentsmodel-fuel:45%n-dodecane,20%n-decane,25%n-butylbenzene,10%methyl-cyclo-hexane;(ii)a12-componentsmodel-fuel:20%n-dodecane,15%n-decane,15%n-tetradecane,10%n-hexadecane,5%iso-octane,5%methylcyclo-hexane,5%cyclo-octane,5%butylbenzene,5%m-xylene,5%1,2,4-trimethylbenzene,5%tetraline,5%1-methylnaphtalene.Areasonableagreementbetweentheignitiondata[22,25]andthemodelingwasreportedalthoughthepredictedactivationenergywaslowerthanmeasured.Betterpredictionswereobtainedusingthe12-componentsmodel-fuel.Mawidetal.[74]furtherstudiedtheeffectofthemodel-fuelcompositiononthemodelpredictions,concentratingonthearomaticcontents.Fivecompo-sitionsofa14-componentsmodel-fuelwerecon-sideredbytheauthors.Theconstituentsofthemodel-fuelswere:n-dodecane,n-decane,

n-hexadecane,n-tetradecane,iso-octane,cyclo-octane,methylcyclohexane,1-methylnaphtalene,tet-ralin,1,2,4,5-tetramethylbenzene,butylbenzene,m-xylene,benzene,toluene.Thekineticschemeconsistedof1484reversiblereactionsvs.222species.Areasonableagreementbetweentheignitiondata[22,25]andthepredictionswasobtainedalthoughthepredictedactivationenergyislowerthanmeasured.Inamorerecentstudy,Mawidetal.[75]studiedtheeffectofthemodel-fuelcompositiononthemodelpredictionsinthesameconditionsasbefore[73,74].Threecompositionsofa13-com-ponentsmodel-fuelwereused.Themodel-fuelsincluded12or6compoundsamongn-dodecane,n-decane,n-tetradecane,n-hexadecane,iso-octane,methylcyclohexane,cyclo-octane,n-butylbenzene,m-xylene,1,2,4-trimethylbenzene,tetralin,1-methyl-naphtalene.Thekineticmechanismtheyusedconsistedof1500reversiblereactionsvs.223species.Betterpredictionswiththe12-componentsmodel-fuelwereobtained,althoughthepredictedactivationenergywasstilllowerthanmeasured[22,25].

6.Newkineticmodelingofkeroseneoxidationandcombustion

Inthepresentpaper,themodelingapproachof

Dagaut[38]wasextendedtotheoxidationofJetA-1underhighpressure.Thiskineticmechanismisavailablefromtheauthorsuponrequest(dagaut@cnrs-orleans.fr).ExamplesofthemodelingresultsarepresentedbelowusingthecomputerprogramfromtheChemkinpackage[76–78].Asbefore,apreliminaryvalidationofthekineticschemefortheoxidationofthepurecomponentsofthesurrogatemixture(n-decane,n-propylbenzene,andn-propylcyclohexane[38,79]wasperformed.Thekerosenekineticmodelusedhereconsistedof209speciesand1673reversiblereactions.Themodel-fuelmolarcompositionusedinthismodelingisthatusedpreviously[38]:74%n-decane,15%n-propylbenzene,and11%n-propylcyclohexane.Thecomputedignitiondelaysareinreasonableagreementwiththeliteraturedata[22,25,27–29]obtainedforanequivalenceratioof0.5(Fig.41).AscanbeseenfromFigs.42–44,theproposedkerosenekineticoxidationschemerepresentsfairlywelltheexperimentalresultsobtainedinJSRconditionsat1,10and40atm.Fromthesefigures,itisclearthatthekineticmodelpresentlyusedstillneedsimprovementsunderhigh-pressureconditions.Agoodagreementwith

Table5

Kineticschemesusedforsimulatingtheignition,oxidation,orcombustionofkerosene84SchemetypeGlobalOnestepQuasiglobal

DetailedDetailedDetailedDetailedQuasi-globalSemi-detailedDetailed

DetailedDetailedSemi-detailed

FuelKeroseneCommercialkerosene

KeroseneTR0

KeroseneTR0KeroseneTR0KeroseneTR0

KeroseneTR0

KeroseneKeroseneKerosene

KeroseneTR0KeroseneTR0JP-8andkero-seneTR0

Conditions

Combustionrig0.3–1MPa

CombustioninaductofparallelplatesJSRatatmosphericpressure

JSRatatmosphericpressureJSRat10–40atmPremixedflatflameburnerat6kPa.Equivalenceratio:2.2

Premixedflatflameburnerat6kPa.Equivalenceratio:2.2[30]

Combustionchamberatc.a.35atm

JSRdatafrom[37]at10–40atm,andpremixedflatflameburnerat1atm,dataof[31]

Gasturbine,premixedflatflameburnerdataof[31]

JSRdataof[37]10–40atmJSRdataof[38]1atmPremixedflatflameburnerdataof[31]Comments

Modelingofsootformation.TwoArrheniusequationsused:oneforthefuelconsumption,onefortheformationofsoot

GlobalArrheniusequationschemeusedtosimulateflamespeed,flametemperature,andheatrelease

Concentrationprofilesversustimeweremodeled.Themajorspeciesweresimulatedcorrectly.Modelfuel:79%n-undecane,10%n-propylcyclo-hexane,11%1,2,4-trimethylbenzene(bywt)

Concentrationprofilesversustimeweremodeled.Themajorspeciesweresimulatedcorrectly.Modelfuel:n-decane.603reversiblereactionsand78species

Concentrationprofilesversustemperatureweremodeled.Themajorspeciesweresimulatedcorrectly.Modelfuel:n-decane.573reversiblereactionsand90species.

Concentrationprofilesversusdistancetotheburnerweremodeled.Majorandminorspeciessimulatedcorrectly.Model-fuel:90%n-decane,10%toluene(vol).207reversiblereactionsand39species

Concentrationprofilesversusdistancetotheburnerweremodeled.Majorandminorspeciessimulatedcorrectly.Model-fuels:n-decaneCbenzeneortoluene,orethylbenzene,orethylbenzene–naphtalene.1085reversiblereactionsand193species

CFDcomputations,sootpredictions.Model-fuel:C12H24.Fiveglobalreactions,12reversiblereactionsand10speciesincludingsootMajorspeciescorrectlypredicted.Model-fuel:%n-decane,11%toluene(vol).440reversiblereactionsand84species

FlameletmodelingincludingNOxandsootformation.Validationagainstthepremixedflatflameburnerdataof[31].Model-fuel:n-decane-1,2,4-trimethylbenzene.Thesizeofthekineticschemeisnotspecified

Concentrationprofilesversustemperatureweremodeled.Themajorandminorspeciesweresimulatedcorrectly.Benzeneformationwasunderpredicted.Modelfuel:78%n-decane,9.8%cyclohexane,12.2%toluene(vol).1463reversiblereactionsand188species

Concentrationprofilesversustemperatureweremodeled.Themajorandminorspeciesweresimulatedcorrectly.Benzeneandtolueneformationwaswellpredicted.Modelfuel:74%n-decane,11%n-propylcyclohexane,15%n-propylbenzene(vol).1592reversiblereactions,207species

Concentrationprofilesversusdistancetotheburnerweremodeled.Majorandminorspeciessimulatedcorrectly.Acetyleneandbenzenemolefractionswereunder-predicted.Model-fuel:73.5%n-dodecane,5.5%iso-octane,10%methylcyclohexane,10%benzene,1%toluene(vol).Thesizeofthekineticschemeisnotspecified

Ref.

Najar,Goodger[50]Aly,Salem[51]Gueretetal.[35]

Cathonnetetal.[52]

Dagautetal.[36,37]

Vovelleetal.[30]

LindstedtandMaur-ice[56]

Wang[57]Pattersonetal.[58]Riesmeieretal.[59]

Cathonnetetal.[60]

Dagaut[38]

Violietal.[7]

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92Detailedandreduced

Semi-detailedSemi-detailed,lumpedreactionsDetailedReduced

Detailedandreduced

ReducedoptimizedDetailed

DetailedJP-8

JP-8JP-8KeroseneAVTUR

KeroseneTR0

KeroseneTR0KeroseneTR0

JP-8

JP-8

Ignitiondelaysat1atmfromMullins[22]andFreemanandLefebvre[25]

Counter-flowdiffusionflame

Flowreactorat8atm

Co-flowingkerosene-airjetflamesof[33]JSRconditions[37]

Premixedflatflameburnerdataof[31]

JSRconditionsof[37]andpremixedflatflameburnerexperimentsof[31]

PlugflowignitionusingthedatafromMullins[22]andFreemanandLefebvre[25]

PlugflowignitionusingthedatafromMullins[22]andFreemanandLefebvre[25]

Reasonableagreementwiththedata.Goodagreementbetweenthe

Montgomeryetal.reducedanddetailedscheme(1162reversiblereactionsand1species).[66]

Model-fuel:32.6%n-decane,34.7%n-dodecane,16.7%methylcyclo-hexane,16%n-butylbenzene(vol)

Modelingofthetemperatureprofilesandextinctionlimits.Model-fuel:n-Cookeetal.[47]

octane,n-dodecane,n-hexadecane,xylenes,decaline,tetraline[7].5032reversiblereactions,221species

ModelingofCOconcentrationprofilesmeasuredversustemperature.Agostaetal.[48]

Model-fuels:n-dodecane,heptamethylnonane,methylcyclohexane,deca-line,1-methylnaphtalenewithvariablecomposition.Thesizeofthekineticschemeisnotspecified

Modelingofsootvolumefraction,temperature,mixturefraction.Model-Wenetal.[67]fueln-decane,toluene.1592reversiblereactionsand207speciesReductionofadetailedscheme(225species,34993irreversible

Lucheetal[69]

reactions).Goodagreementbetweenthedetailedandreducedschemes.Model-fuel:n-decane,n-propylbenzene,n-propylcyclohexane

Concentrationprofilesversusdistancetotheburnerweremodeled.MajorKyneetal.[72]

andminorspeciessimulatedcorrectly.Acetyleneandbenzenemolefractionswereunder-predicted.Model-fuel:%n-decane,11%toluene(vol).A165reactionversus60specieswasobtainedbyreductionofa440reactionsversus84speciesscheme.Flamespeedsasafunctionofequivalenceratioandinitialtemperaturewerepredicted

AnoptimizedreducedschemewasproposedbaseontheschemeofKyneElliottetal.[70,71]

etal.[72].Thesamedegreeofagreementbetweenthereducedandoriginalschemeswasobtained

Studyoftheeffectofthemodel-fuelcompositiononthemodel

Mawidetal.[73]

predictions.Twomodel-fuelswereused:(i)afour-componentsmodel-fuel:45%n-dodecane,20%n-decane,25%n-butylbenzene,10%methyl-cyclohexane;(ii)a12-componentsmodel-fuel:20%n-dodecane,15%n-decane,15%n-tetradecane,10%n-hexadecane,5%iso-octane,5%methylcyclohexane,5%cyclo-octane,5%butylbenzene,5%m-xylene,5%1,2,4-trimethylbenzene,5%tetraline,5%1-methylnaphtalene.1330reactionsvs.202species.Reasonableagreementbetweenthedataandthepredictions.Betterpredictionswiththe12-componentsmodel-fuel.Thepredictedactivationenergyislowerthanmeasured

Studyoftheeffectofthemodel-fuelcomposition,aromaticcontents,onMawidetal.[74]

themodelpredictions.Fivecompositionsofa14-componentsmodel-fuelwereused.Model-fuel:n-dodecane,n-decane,n-hexadecane,n-tetra-decane,iso-octane,cyclo-octane,methylcyclohexane,1-methylnaphta-lene,tetralin,1,2,4,5-tetramethylbenzene,butylbenzene,m-xylene,benzene,toluene.1484reactionsvresus222species.Reasonable

agreementbetweenthedataandthepredictions.Thepredictedactivationenergyislowerthanmeasured

(continuedonnextpage)

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–928586P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

]57[.latedi.fweaRM-,nehr,nteeea-irewentllwowacyblcohasle-tnnsldoeleeooi-cmistydufny-acgo-,c1eirmlee,,Rdeendnenr.enispehoaalenrtmcexarindetceosotohetetittndo,peane-lsBvitonnceyn3.itogce2scailzspnyn2nodomohesiepomtbuttmcaelscic-rio3smyheddc1d,tverernleesppeaunnufoamioehefoptrih-ctttlo-esmcT-4dnoo,ad.enloocis2,raemti1uixsi,eafse,lt-eonebalhpranidesdtocelrefm2eyehoootc1dxvmtfa-enscexeteeoemr0enfrfgh,weeh-e0Tntndinn5eoet,e1bpersh.ssiez.tnsnnetutnmsnfonaenoioeoaetccbeycellmc-em,dyattdiddauhe2mmue1noeerprtrtbSsgeaCpue-atnnahhtt]22[snilluMmorfat]a5d2e[hetrgvnbiesfueLnodintiangnsianmoweioteiflrdFngoudClPnale8u-)FPdJeunitnoecp(yt5edeellmibeataheTcSDthekeroseneflamedatafrom[31]wasalsoobtainedwiththismodel,asdepictedonFig.45.

Accordingtokineticmodel,thefueloxidationisdrivenbytheoxidationofn-decane.Theoxidationofthisn-alkaneproducesC10alkylradicals.Viatheirdecomposition,1-C4H9isproduced.Thedecompositionofthisradicalisthemajorsourceofethylradicals(60%at900KintheconditionsofFig.41).Ethylisalsoproducedintheseconditionsbydecompositionof3-C10H21(15%),andbydecompositionofn-propylbenzene.EthylradicalsreactwithmolecularoxygenyieldingHO2.TherecombinationofHO2andthereactionsofHO2withthefuelyieldH2O2.ThedecompositionofthisintermediateproducesOHradicalsthat,inturn,oxidizethefuel.7.Reformulatedjet-fuels

Althoughthepriceofcrudeoilisexpectedtostillfurtherincreasemakingalternativefuelseconomi-callyviable,mostlyforsafetyreasons,theaviationindustryisresistanttoneworreformulatedfuels.Therefore,itisforeseenthatnon-renewablekeroseneshouldstillbeusedbyaviationforthenexttenyearswhereasrenewablealternativessuchasbiodieselshouldbefurtherappliedtogroundtransportation.Biodieselproducedfromcrops(soya,rapeseed,sunflower,.)canbeblendedwithkero-seneforuseinaero-jetengineswiththeadvantageofreducinggreenhouseemissions[80].However,suchblendshavelessperformanceundercoldtemperaturesconditions,withpotentialfuellinesorfilterblockage[81].Fischer–Tropsch[82–86]syn-thetickerosenecanbeproducedfromawidevarietyofsourcesincludingrenewable(crops,wood,straw,animalfat,waste,.)andfossil(coal,naturalgas,methanehydrates)sources.TheyareobtainedbycatalyticconversionofCO/H2mixturesyieldingliquidhydrocarbons,primarystraight-chainparaffins,andalternatively,afterfurtherprocess,branchedparaffinsandcyclichydrocarbons,moresuitableforkeroseneblending.SuchFischer–TropschkerosenescurrentlyproducedinSouthAfricaandextensivelytested[84–86]mightspreadovertheWorldinthenearfuturebasedontheirencouragingtestresults.8.Concludingremarks

Alargedatasetofexperimentaldataisavailableforthecombustionofkerosene.However,moredataarestillnecessaryinflameconditions(highpressure

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–9287

(a)

400300Ignition delay/ms200

Mullins(a)FreemanandLefebvre(b)Thismodeling(b)104

103Ignition delay/µs100

102

(a)(b)(c)(d)(e)(f)Thismodeling101

4030200.95

1

1000K/T

1.05

1.1

100

0.5

0.6

0.7

0.81000K/T

0.9

1

1.1

Fig.41.Ignitiondelayofkerosene/airmixturesat1atm(a)and20atm(b).(a)Thedataweretakenfrom[22]for(a)andfrom[25]for(b).(b)Thedataweretakenfrom[29]for(a)and(b),from[28]for(c)and(d),from[27]for(e)and(f).Themodelingresultsarepresentedaslines.

10–2

O2H2COCO2CH2O10–3

Mole FractionMole Fraction10–310–4

CH4C2H4C2H2C2H6C3H6Allene10–410–5

10–5

900

1000

11001200

T/K

1300

1400

10–6

900

10001100

T/K

120013001400

2e–41e–4

Mole Fraction2e–51e–5

Mole Fraction1,3C4H61C4H8t2-C4H8c2-C4H81C5H101C6H121C7H142e–41e–4

1,3CPDC6H6Toluene2e–51e–5

2e–61e–6

900100011001200130014002e–61e–6

900

1000

1100

1200

1300

1400

T/K

T/K

Fig.42.OxidationofkeroseneinaJSRat1atmandtZ0.07s(initialconditions:0.07%keroseneTR0,1.155%O2,diluentnitrogen)[48].Comparisonbetweenexperimentalresults(largesymbols)andmodeling(smallsymbolsandlines).

88P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

CH4C2H4C2H2C2H6C3H6Allene10–310–2Mole FractionMole Fraction10–410–3

O2H2COCO2CH2O8009001000T/K1100120010–4

10–510–5

7002e-41e-410–67002e-48009001000T/K11001200Mole Fraction2e-51e-5Mole Fraction1C4H81C5H101C6H121C7H141C8H181e-4C6H6Toluene2e-51e-52e-61e-67008009001000T/K

110012002e-61e-67008009001000T/K

11001200Fig.43.OxidationofkeroseneinaJSRat10atmandtZ0.5s(initialconditions:0.1%keroseneTR0,1.65%O2,diluentnitrogen)[36].Comparisonbetweenexperimentalresults(largesymbols)andmodeling(smallsymbolsandlines).

10–22e-41e-4Mole FractionMole Fraction10–3CH4C2H4C2H2C2H6C3H62e-51e-510–4O2H2COCO2CH2O8009001000T/K

1e-5

110012002e-61e-67008009001000T/K

1100120010–57001C4H81C6H12Mole Fraction4e-63e-62e-6

1e-67008009001000T/K

11001200Fig.44.OxidationofkeroseneinaJSRat40atmandtZ2.0s(initialconditions:0.025%keroseneTR0,0.4125%O2,diluentnitrogen)[36].Comparisonbetweenexperimentalresults(largesymbols)andmodeling(smallsymbolsandlines).

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

0.2O2COH2CO2Mole fraction0.00250.0020.00150.0015e-40C5H101-C4H8Mole fraction0.150.10.05000.511.5z/mm

22.5300.511.5z/mm

22.530.030.0250.020.0150.010.00500.0012C2H4C2H2C2H6CH4Mole fraction0.0018e-46e-44e-42e-40AlleneBenzeneMole fraction00.511.5z/mm

22.5300.511.5z/mm

22.53Fig.45.Flamestructureunderatmosphericpressureconditions:2.95%ofkeroseneTR0,28.%oxygen,68.41%nitrogeninmol,equivalenceratioof1.7[31].Comparisonbetweenexperimentalresults(largesymbols)andmodeling(smallsymbolsandlines).

andfuel-leanconditions)tofurthertestthemodels.Newmeasurementsfortheignitionofkerosenewouldbeusefultoo.Furtherimprovementsoftheexistingkineticmodelsarestillnecessaryalthoughlotsofprogresswasmadeintherecentyears.SuchworkiscurrentlyundertakenthroughacollaborativeeffortbetweenCNRSandtheDLR-Stuttgart.Acknowledgements

ThanksareduetoDrF.Leconteforhishelpwiththeexperimentsonkerosenemodel-fuels.TheauthorsarealsogratefultoDrsA.A.Borisov,A.Burcat,P.Frank,O.G.Penyazkov,andA.Yu.Starikovskiiforcommu-nicatingtheirresultspriortopublication.ThanksareduetoDrsT.EdwardsandCAMosesforsendingreprints.PartofthisresearchwasfundedbytheEuropeanCommunitythroughtheCFD4CcontractG4RD-CT-1999-00075andbyCEA.

AppendixA

Propertiesofaviationjetturbinefuel(JetA-1)producedfromcrudeoilstraightdistillationwithhydroprocessingofthekerosenefraction.Thefuelis100%hydroprocessedkerosenefractionwithantiox-idantandstaticdissipatoradditives.

PropertiesAppearance

Clear,brightand

visuallyfreefromsolidmatterandinsolublewateratambienttemperature

CompositionTotalacidity,mg

KOH/g,notmorethanAromatics,vol%,notmorethan

0.01525.0

Visual

Values

Testmethod

AS3242AS1319

(continuedonnextpage)

90P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

Properties

Totalsulfur,wt%,notmorethan

Mercaptansulfur,wt%,notmorethanorDoctortest

Hydroprocessedcom-ponentsinbatch,%Volatility

Distillationrange

Initialboilingpoint,8CRecoveredattemperature10%vol,8C,nothigherthan

50%vol,8C,nothigherthan

90%vol,8C,nothigherthan

Endboilingpoint,8C,nothigherthanResidue,vol%,notmorethan

Loss,vol%,notmorethan

Flashpoint,8C,notlowerthan

Specificdensityat158C,kg/m3Fluidity

Freezingpoint,8C,nothigherthan

ViscosityatK208C,mm2/s,notmorethanCombustion

Specificenergy,MJ/kg,notlessthan

Smokepoint,mm,notlessthan

OrSmokePoint,mm,notlessthanAndnaphtalenes,vol%,notmorethanCorrosion

Copperstrip,2hat1008C,class,nothigherthanStability

ThermalstabilityJETOTat2608CFikerpressurediffer-ential,mmHg,nothigherthan

Tubedepositsrating(visual),nothigherthanContaninants

Existentgums,mg/100cm3,notmorethan

Values0.300.0030

Negative

Negative,incl.‘nil’or100%

Report

205ReportReport3001.51.0775–840

K478.0

42.825193.0

125.03

Withoutpeacockorabnormalcolordeposits7

TestmethodAS4294AS3227AS4952

AS86

AS3828AS1298

AS5972AS445

AS4529AS1322AS1322AS1840

AS131

AS3241

AS381

Properties

ValuesTestmethodWaterseparation1b

AS1094

characteristics:Waterreactioninterfacerat-ing,nothigherthanMicroseparometer,atpointofmanufacture,MSEP

Fuelwithstaticdissi-70AS3948

pator,notlessthanFuelwithoutstatic85

dissipator,notlessthan

ConductivitySpecificelectrical50–450AS2624

conductivity,pS/mattimeandtemperatureofcustodyLubricity

BOCLEwearscar0.85AS5001

diameter,notmorethan

Additives

Antioxidantinhydro-17–24

processedfuels,mg/dm3,(Mandatory)Staticdissipation,mg/Mandatorydm3:

Firstdoping,Stadis3450max

Icinginhibitor,%vol,0.15

AS5006

byagreement,notmorethan.

References

[1]MauriceLQ,LanderH,EdwardsT,HarrisonIIIWE.Advanced

aviationfuels:alookaheadviaahistoricalperspective.Fuel2001;80:747–56.

[2]GuibetJC.Fuelsandengines.Paris:EditionsTechnip;1999.[3]EdwardsT,MauriceLQ.Surrogatemixturestorepresent

complexaviationandrocketfuels.JPropulPower2001;17:461–6.

[4]GoodgerEM.Jetfuelsdevelopmentandalternatives.ProcInst

MechEng1995;209:147–55.

[5]SobelDR,SpadacciniLJ.Hydrocarbonfuelcoolingtechnol-ogiesforadvancedpropulsion.JEngGasTurbinesPower1997;119:344–51.

[6]MartelCR.MolecularweightandaveragecompositionofJP-4,

JP-5,JP-8,andJetA.AFWAL/POSFReport;July15,1988.[7]VioliA,YanS,EddingsEG,SarofimAF,GranataS,

FavarelliT,etal.ExperimentalformulationandkineticmodelforJP-8surrogatemixture.CombustSciTechnol2002;174(11&12):399–417.

[8]EdwardsT.Liquidfuelsandpropellantsforaerospace

propulsion:1903–2003.JPropulsPower2003;19(6):10–107.[9]Gracia-SalcedoCM,BrabbsTA,McBrideBJ.Experimental

verificationofthethermodynamicpropertiesofJet-Afuel.NASAtechnicalmemorandum101475;1988.

P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

91

[10]Gue

´retC.Elaborationd’unmode`lecine´tiquepourl’oxydationduke

´rose`neetd’hydrocarburesrepre´sentatifs.Thesis,Univer-sityofOrle

´ans;19[inFrench].[11]NguyenHL,YingSJ.CriticalevaluationofJet-Aspray

combustionusingpropanechemicalkineticsingasturbinecombustionsimulatedbyKIVA-II.AIAA-90-2439,26thjointpropulsionconference,Orlando,FL;July16-18,1990.

[12]RosfjordTJ.Aviation-fuelpropertyeffectsoncombustion.

NASAcontractorreport168334;1984.

[13]RachnerM.DieStoffeigenschaftenvonKerosinJetA-1.Report

ISRNDLR-Mitt.-98-01;1998[inGerman].

[14]Handbookofaviationfuelproperties.3rded.CRCreport635.

CRCInc.,Alpharetta,GA;2004.

[15]Surveyofjetfuels(1990–1996).Defenselogisticagency,

defenseenergysupportcenter,FortBelvoir,VA;1998.

[16]EdwardsT.Kerosenefuelsforaerospacepropulsion—

compositionandproperties.AIAA2002-3874;2002.

[17]HazlettRN.Thermaloxidationstabilityofaviationturbinefuels

ASTMmonograph1.Philadelphia,PA:AmericanSocietyofTestingandMaterials;1991.

[18]ZabarnickS,WhitacreSD.Aspectsofjetfueloxidation.JEng

GasTurbinesPower1998;120:519–25.

[19]LenhertDB,KhanAR,CernanskyNP,MillerDL,OwensKG.

TheoxidationofanISFsurrogateanditscomponentsinthenegativetemperaturecoefficientregion.ProceedingsofthethirdjointmeetingoftheUSsectionsofthecombustioninstitute,paperB16,Chicago,IL;16-19March2003.

[20]SchulzWD.OxidationproductsofasurrogateJP-8fuel.ACS

PetrolChemDivPrepr1991;37(2):383–92.

[21]HeneghanSP,SchulzWD.Statictestsofjetfuelthermaland

oxidativestability.JPropulPower1993;9(1):5–9.

[22]MullinsBP.Studiesonthespontaneousignitionoffuelsinjected

intoahotairstream.V—Ignitiondelaymeasurementsonhydrocarbons.Fuel1953;32:363–79[andalsoinMullinsBP.Spontaneousignitionofliquidfuels.AGARDographNo.4,ButterworthsSci.Pub.(London);1955].

[23]MestreA,DucourneauF.Recentstudiesofthespontaneous

ignitionofrichair–kerosinemixtures.In:WeinbergF,editor.ProceedingsofcombustioninstituteEuropeansymposium.London:AcademicPress;1973.p.225–9.

[24]SpadacciniLJ,TeVeldeJA.Autoignitioncharacteristicsof

aircraft-typefuels.CombustFlame1982;46:283–300.

[25]FreemanG,LefebvreAH.Spontaneousignitioncharacteristics

ofgaseoushydrocarbon-airmixtures.CombustFlame1984;58:153–62.

[26]BorisovAA.Personalcommunication;2005.

[27]DeanAJ,PenyazkovOG,SevrukKL,VaratharajanB.Ignition

ofaviationkeroseneathightemperatures.20thICDERS,

Montre

´al,Canada;July21-August5,2005.[28]StarikovskiiAYu,KhorunzhenkoVI,MazkoNS,SechenovVA,

ZhukovVP,ZudovVM.Investigationofthermodynamicpropertiesandignitionofkerosene–airmixturesbehindreflectedshockwavefront.MoscowInstituteofPhysicsandTechnology,PhysicsofNonequilibriumSystemsLaboratory,Technicalreport;August2003.

[29]DavidsonDF,HansonRK.Fundamentalkineticdatabase

utilizingshocktubemeasurements.6thinternationalconferenceonchemicalkinetics,Gaithersburg,MD;July25–292005.[30]VovelleC,DelfauJL,ReuillonM.Formationofaromatic

hydrocarbonsindecaneandkeroseneflamesatreducedpressure.In:BockhornH,editor.Sootformationincombustion:mechanismsandmodels.Berlin:Springer;1994.p.50–65.

[31]Doute

´C,DelfauJL,AkrichR,VovelleC.Chemicalstructureofatmosphericpressurepremixedn-decaneandkeroseneflames.CombustSciTechnol1995;106:327–44.

[32]VovelleC,DelfauJL,ReuillonM,AckrichR,BouhriaM,

SanogoO.Comparisonofaromaticsformationindecaneandkeroseneflames,ProceedingsoftheACSnationalmeeting,NewYork,NY,1991;36(4):1456–63.

[33]YoungKJ,StewartCD,MossJB.Sootformationinturbulent

nonpremixedkerosene–airflamesburningatelevatedpressure:experimentalmeasurement.ProcCombustInst1994;25:609–17.[34]EberiusH,FrankP,KickT,NaumannC,SteilU,WahlC.EU

projectcomputationalfluiddynamicsforcombustionno.GRD1-1999–10325,Finalreportforsubtask1.2.3.(D1.7);2001.[35]Gue

´retC,CathonnetM,BoettnerJC,GaillardF.Experimentalstudyandmodelingofkeroseneoxidationinajet-stirredflowreactor.ProcCombustInst1990;23:211–6.

[36]DagautP,ReuillonM,BoettnerJC,CathonnetM.Kerosene

combustionatpressuresupto40atm:Experimentalstudyanddetailedchemicalkineticmodeling.ProcCombustInst1994;25:919–26.

[37]DagautP,ReuillonM,CathonnetM,VoisinD.Highpressure

oxidationofnormaldecaneandkeroseneindiluteconditionsfromlowtohightemperature.JChimPhysPhysChimBiol1995;92:47–76.

[38]DagautP.Onthekineticsofhydrocarbonsoxidationfrom

naturalgastokeroseneanddieselfuel.PhysChemChemPhys2002;4:2079–94.

[39]DagautP.EUprojectcomputationalfluiddynamicsfor

combustionno.GRD1-1999-10325,Finalreportforsubtask1.2.4.(D1.8);2001.

[40]DagautP,ReuillonM,CathonnetM.Highpressureoxidationof

liquidfuelsfromlowtohightemperature.3.n-Decane.CombustSciTechnol1994;103:349–59.

[41]DelfauJL,BouhriaM,ReuillonM,SanogoO,AkrichR,

VovelleC.Experimentalandcomputationalinvestigationofthestructureofasootingdecane–O2–Arflame.ProcCombustInst1990;23:1567–72.[42]Bale

`s-Gue´retC,CathonnetM,BoettnerJC,GaillardF.Experimentalandkineticmodellingofhigherhydrocarbonsoxidationinajet-stirredflowreactor.EnergyFuels1992;6:1–94.

[43]HorningDC,DavidsonDF,HansonRK.Studyofthehigh-temperatureautoignitionofn-alkane/O2/Armixtures.JPropulPower2002;18(2):363–71.

[44]VovelleC,DelfauJL.Formationdespre

´curseursdesuielorsdelacombustiondukerosene.RevueScientifiqueetTechniquede

laDe

´fense2001;53(3):117–21[inFrench].[45]PfahlU,FiewegerK,AdomeitG.Self-ingnitionofDiesel-relevanthydrocarbon–airmixturesunderengineconditions.ProcCombInst1996;26:781–9.

[46]ZeppieriSP,KlotzSD,DryerFL.Modelingconceptsforlarger

carbonnumberalkanes:apartiallyreducedskeletalmechanismforn-decaneoxidationandpyrolysis.ProcCombInst2000;28:1587–95.

[47]CookeJA,BellucciM,SmookeMD,GomezA,VioliA,

FavarelliT,etal.ComputationalandexperimentalstudyofJP-8,asurrogate,anditscomponentsincounterflowdiffusionflames.ProcCombustInst2005;30:439–46.

[48]AgostaA,CernanskyNP,MillerDL,FavarelliT,RanziE.

Referencecomponentsofjetfuels:kineticmodelingandexperimentalresults.ExpThermFluidSci2004;28(7):701–8.

92P.Dagaut,M.Cathonnet/ProgressinEnergyandCombustionScience32(2006)48–92

[49]OlchanskiE,BurcatA.Decaneoxidationinashock-tube.IntJ

ChemKinet;2006:inpress.

[50]NajarYSH,GoodgerEM.Sootformationingasturbinesusing

heavyfuels,1.Fuel1981;60:980–6.

[51]AlySL,SalemH.Predictionofpremixedlaminarflame

characteristicsofcommercialkerosenefuel.Fuel19;68:1203–9.

[52]CathonnetM,Bale

`s-Gue´retC,ChakirA,DagautP,BoettnerJC,SchultzJL.Ontheuseofdetailedchemicalkineticstomodelaeronauticalcombustorsperformances,In:ProceedingsofthethirdEuropeanpropulsionforum,EPF91,ONERAParis,November13–151991,AAAF;1992,p.313–31.

[53]DagautP,PengloanG,RistoriA.Oxidation,ignitionand

combustionoftoluene:Experimentalanddetailedchemicalkineticmodeling.PhysChemChemPhys2002;4:1846–.[]Gaı

¨lS,DagautP.Experimentalkineticstudyoftheoxidationofp-xyleneinaJSRandcomprehensivedetailedchemicalkineticmodeling.CombustFlame2005;141:281–97.

[55]DagautP,RistoriA,ElBakaliA,CathonnetM.Experimental

andkineticmodelingstudyoftheoxidationofn-propylbenzene.Fuel2002;81:173–84.

[56]LindstedtP,MauriceLQ.Detailedchemical–kineticmodelfor

aviationfuels.JPropulPower2000;16:187–95.

[57]WangT-S.Thermophysicscharacterizationofkerosene

combustion.J.ThermophysHeatTransfer2001;15:140–7.[58]PattersonPM,KyneAG,PourkhashanianM,WilliamsA,

WilsonCW.Combustionofkeroseneincounterflowdiffusionflames.JPropulPower2000;16:453–60.

[59]RiesmeirE,HonnetS,PetersN.Flameletmodelingofpollutant

formationinagasturbinecombustionchamberusingdetailedchemistryforakerosenemodelfuel.JEngGasTurbinePower2004;126:9–905.

[60]CathonnetM,VoisinD,EtsouliA,SferdeanC,ReuillonM,

BoettnerJC,etal.Kerosenecombustionmodellingusingdetailedandreducedchemicalkineticmechanisms,Symposiumappliedvehicletechnologypanelongasturbineenginecombustion,RTOmeetingproceedings,NATOres.andtech.organisation,Neuillysurseine,vol.14.France;1999.p.1–9.[61]LadommatosN,RubensteinP,BennettP.Someeffectsof

molecularstructureofsinglehydrocarbonsonsootingtendency.Fuel1996;75:114–24.

[62]KaiserEW,SieglWO,CottonDF,AndersonRW.Effectoffuel

structureonemissionsfromaspark-ignitedengine.2.Naphtheneandaromaticfuels.EnvironSciTechnol1992;26:1581–6.

[63]VoisinD,MarchalA,ReuillonM,BoettnerJC,CathonnetM.

ExperimentalandkineticmodelingstudyofcyclohexaneoxidationinaJSRathighpressure.CombustSciTechnol1998;138:137–58.

[]ElBakaliA,Braun-UnkhoffM,DagautP,FrankP,

CathonnetM.Detailedkineticreactionmechanismforcyclohexaneoxidationatpressureuptotenatmospheres.ProcCombustInst2000;28:1631–8.

[65]RistoriA,DagautP,ElBakaliA,CathonnetM.Theoxidationof

n-propylcyclohexane:experimentalresultsandkineticmodel-ing.CombustSciTechnol2001;65:197–228.

[66]MontgomeryCJ,CannonSM,MawidMA,SekarB.Reduced

chemicalkineticmechanismsforJP-8combustion.AIAA2002-0336:p.1–10.

[67]WenZ,YunS,ThomsonMJ,LightstoneMF.Modelingsoot

formationinturbulentkerosene/airjetdiffusionflames.CombustFlame2003;135:323–40.

[68]Doute

´C,DelfauJL,VovelleC.Modelingthestructureofapre-mixedn-decaneflame.CombustSciTechnol1997;130:269–313.

[69]LucheJ,ReuillonM,BoettnerJC,CathonnetM.Reductionof

largedetailedkineticmechanisms:applicationtokerosene/aircombustion.CombustSciTechnol2004;176:1935–63.

[70]ElliottL,InghamDB,KyneAG,MeraNS,PourkashanianV,

WilsonCW.Anovelapproachtomechanismreductionoptimi-sationforaviationfuel/airreactionmechanismusingageneticalgorithm,In:ProceedingsofASMEturboexpo2004,powerforland,sea,andair.Vienna,Austria;June14–172004,GT2004-53053.[71]ElliottL,InghamaDB,KyneAG,MerabNS,PourkashanianM,

WilsonCW.Geneticalgorithmsforoptimisationofchemicalkineticsreactionmechanisms.ProgEnergyCombustSci2004;30:297–328.

[72]KyneAG,PattersonPM,PourkashanianM,WilliamsA,Wilson

CJ.Predictionofpremixedlaminarflamestructureandburningvelocityofaviationfuel–airmixture,In:proceedingsofturboexpo2001:ASMEturboexpo2001:land,seaandair,June4–7,NewOrleans,USA.

[73]MawidMA,ParkTW,SekarB,AranaC,Developmentand

validationofadetailedJP-8fuelchemistrymechanism,AIAA2002-3876,38thJointpropulsionconferenceandexhibit,Indianapolis,Indiana,7–10July,2002.

[74]MawidMA,ParkTW,SekarB,AranaC,SensitivityofJP-8fuel

combustionandignitiontoaromaticcomponents,AIAA2003-4938,39thJointpropulsionconferenceandexhibit,Huntsville,Alabama,20–23July,2003.

[75]MawidMA,ParkTW,SekarB,AranaC,Importanceof

surrogateJP-8/Jet-Afuelcompositionindetailedchemicalkineticsdevelopment.AIAA2004-4207.40thJointpropulsionconferenceandexhibit,FortLauderdale,FL;11–14July2004.[76]LutzAE,KeeRJ,MillerJA.Senkin:afortranprogramfor

predictinghomogeneousgasphasechemicalkineticswithsensitivityanalysis,ReportNoSAND87-8248,SandiaNationalLaboratories,Livermore,CA;1988.

[77]GlarborgP,KeeRJ,GrcarJF,MillerJA.PSR:aFortranprogram

formodelingwell-stirredreactors,SandiaReportSAND86-8209,SandiaNationalLaboratories,Livermore,CA;1986.[78]KeeRJ,GrcarJF,SmookeMD,MillerJA.Premix:aFortran

programformodelingsteadylaminarone-dimensionalpre-mixedflame,SandiaReportSAND85-8240,SandiaNationalLaboratories,Livermore,CA;1985.

[79]MatiK.Cine

´tiquedecombustiondugazolea`hautepression,Thesis,UniversityofOrle

´ans,France;2005[inFrench][80]WardleDA.Globalsaleofgreenairtravelsupportedusing

biodiesel.RenewSustEnergyRev2003;7:1–.

[81]ChiuC-W,SchumacherLG,SuppesGJ.Impactofcoldflow

improversonsoybeanbiodieselblend.BiomassBioenergy2004;27:485–91.

[82]FischerF,TropschH.UberdieHerstellungsynthetischer

¨o

lgemische(Synthol)durchAufbauausKohlenoxydundWasserstoff.BrennstChem1923;4:276–85[inGerman].[83]FischerF,TropschH.GermanPatent484337;1925.

[84]MosesCA,StavinohaLL,RoetsP.QuantificationofSasolsemi-syntheticJetA-1ascommercialjetfuel.Southwestresearchinstitutereport8531;November1997.

[85]MosesCA,WilsonIIIG,RoetsP.EvaluationofSasolsynthetic

keroseneforsuitabilityasjetfuel.Southwestresearchinstitutereport;December2003.

[86]EdwardsT,MinusD,HarrisonW,CorporanE,DeWittM,

ZabarnickS,etal.Fischer–Tropschjetfuels—characterisationforadvancedaerospaceapplications,AIAA2004-3885,40thjointpropulsionconferenceandexhibit,FortLauderdale,FL;11–14July2004.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务