搜索
您的当前位置:首页正文

properties of polypropylene_polyaniline coated short glass fiber composites

来源:爱够旅游网
Morphology,Thermal,andMechanicalPropertiesofPolypropylene/PolyanilineCoatedShortGlassFiberComposites

´a,2Sofı´aVazquez-Rodriguez,2RodolfoCruz-Silva,1JorgeRomero-Garcı

´nchez2JoseLuisAngulo-Sa

1´nenIngenierı´ayCienciasAplicadas,UAEM.Av.Universidad1001,CentrodeInvestigacio

´xicoCol.Chamilpa,CP62210,Cuernavaca,Morelos,Me

2´´CentrodeInvestigacionenQuımicaAplicada,Saltillo,Coah.Blvd.EnriqueReynaNo.140,

´xicoCP25100Saltillo,Coahuila,Me

Received12June2006;accepted14November2006

DOI10.1002/app.26026

Publishedonline8May2007inWileyInterScience(www.interscience.wiley.com).ABSTRACT:ShortglassfiberTypeEwascoatedwithelectricallyconductingpolyaniline(PAn)byinsituchemicalpolymerization.TheresultingPAncoatedglassfiber,withsurfaceconductivityof3.3Â10À1S/cm,wasmelt-com-poundedwithisotacticpolypropylene(iPP).Polypropylenegraftedwithmaleicanhydridewasinvestigatedasanadhe-sionpromoterforthesecomposites.Differentialscanningcalo-rimeterandpolarizedlightmicroscopyindicatesthatthePAncoatedglassfiberhasastrongnucleatingactivitytowardsiPP.Scanningelectronmicroscopyshowedtheimprovementinthewettinganddispersionofthefiberswhentheadhesionpromoterwasadded,althoughthisalsoledtofiberencap-sulationandloweringtheelectricalconductivityofthecom-posites.TheadhesionpromotergreatlyimprovedtheYoung’smodulusofthecomposites,andareactionbetweenthemaleicanhydridegroupsoftheadhesionpromoterandthePAnwasproposed.Compositeswithanelectricalcon-ductivitygreaterthan10À9S/cmwereachievedusinga30wt%ofPAncoatedglassfiber.Ó2007WileyPeriodicals,

Inc.JApplPolymSci105:2387–2395,2007

Keywords:electricallyconductivecomposites;reinforcedcomposites;nucleatingagent;adhesionpromotor;maleicanhydridecopolymer

INTRODUCTION

Polyaniline(PAn),anintrinsicallyconductivepoly-mer,hasbeenincreasinglyemployedintheprepara-tionofthermoplastic-basedcompositesforantistaticorelectromagneticshieldingapplicationsinthelastyears.1–7Thegreatpotentialofthispolymerintheaforesaidapplicationsisduetoitsenvironmentalstability,relativelyhighelectricalconductivityandlow-costsyntheticroute.8Comparedwithtraditionalelectricallyconductivemetallicfillers,PAnhasadvantagessuchaslowerweight,lowercost,andhighercorrosionresistance.However,PAnisinfusi-ble,anddirectblendingofPAnpowderwithther-moplasticsbymeltprocessingtechniquesresultsin

Correspondenceto:R.Cruz-Silva(rcruzsilva@uaem.mx).Contractgrantsponsor:CONACYT;contractgrantnumber:46046.

Contractgrantsponsor:PROMEP;contractgrantnumber:UAEMOR-PTC-151.

JournalofAppliedPolymerScience,Vol.105,2387–2395(2007)C2007WileyPeriodicals,Inc.V

ThisarticleisdedicatedtothememoryofProf.JoseLuisAngulo-Sanchez.incompletedispersionleadingtocompositeswithpoormechanicalproperties.Sincetheintroductionofcounter-ioninducedprocessability,9blendsofPAnandawiderangeofthermoplasticshavebeenpre-paredbyextrusionorinjectiontechniques,1–7,10butlowinterfacialadhesionhasledtoadecreaseinthemechanicalpropertiesoftheblends.Forthisreason,incorporationofreinforcementsoradhesionpro-moterstoPAn-thermoplasticblendsisexpectedtoimprovetheoverallmechanicalperformanceoftheresultingcomposites.

Theelectricalconductivityofcompositesofinsulat-ingandconductingphasesiswelldescribedbythepercolationtheory.11Whenacertainamountofcon-ductivefillerisgraduallyaddedtoaninsulatingma-trix,theconductivityofthecompositeremainsclosetothatofthematrix,butwhentheamountofconduc-tivefillerishighenoughtoformacontinuumnet-work,adrasticincreaseintheelectricalconductivityisachieved.Thefractionofconductivefilleratthispointiscalledpercolationthreshold.Furtheradditionoftheconductivefillerhasalessdramaticimpactonelectricalconductivity.Notonlytheconcentrationbutalsotheshapeandaggregationbehavioroftheparticlesoftheconductivefillerhavestronginfluencetolowerthepercolationthreshold.12,13Theoretical

2388andexperimentalstudieshaveshownthatparticleswithaggregationbehaviororhighaspectratio,suchasfiberorflakes,achievethe13,14percolationthresholdatlowervolumeconcentrations.ItisexpectedthatPAn-coatedfiberscanachievethepercolationthresholdatrelativelylowconcentra-tionnotonlybecauseofitshighaspectratiobutalsoduetoaphenomenoncalleddoublepercolation,com-monincompositeswheretheconductingphase15,16islocatedbetweentwononconductingphases.Forinstance,Taipalusetal.1foundthatinternarycompo-sitesofpolypropylene(PP)/glassfiber/PAn,locationofPAnattheinterfacebetweenthefibersandthematrixloweredthepercolationthresholdduetoadoublepercolationmechanism.Nevertheless,uponPAnincorporation,adecreaseinthemechanicalpropertieswasobserved.Whenconductingcarbonfiberwasemployedinsteadofglassfiber,animprovementinelectricalconductivitywasachieved.4Inthiscase,thePAnphasebehavedasa‘‘bridge’’toconnectthecarbonfibers.Asimilarbehaviorwasobservedincompositesofnickelflakescoatedwithconductivepolypyrrole.17Recently,glassfiber2andmica6coatedwithPAnwereusedtopreparecompo-siteswithepoxyresin.Inthesecases,thePAn-coatedparticleshelptodevelopaconductivenetworkwithinthecomposite.Howeverbothcompositeswerepre-paredinliquidmediaandthepolymerizationtookplaceaftermixing.Inmeltprocessing,itispossiblethatadhesionofphysicallyadsorbedPAnonrein-forcementswouldnotbestrongenoughtoresistthehighshearduringprocessing.

SincetheworkdonebyGregoryetal.,18thesur-facemodificationofawiderangeoffiberswithPAnhasbeenextensivelystudied.19–22Geethaetal.23studieddifferentsulfonicacidinthesurfacemodifi-cationofglassfibersbyinsituchemicalpolymeriza-tion.However,graftingofPAntosilicondioxidesurfacesusingsilanecouplingagentsbearinganilinemoietieswasfirstproposedbyWuetal.24,25toimprovetheadhesionbetweentheinorganicsub-strateandthePAn.Usingasimilarapproach,LiandRuckensteinsuccessfullygraftedPAnonsurfacetreatedglassfiber.26However,thismaterialhasnotbeenusedtopreparefiberreinforcedcompositesbymeltprocessingtechniques,andoptimizationofthesurfacemodificationprocesswouldbeinter-esting.

Theaimofthisworkwastoinvestigatetheme-chanical,thermalandelectricpropertiesofisotacticpolypropylene(iPP)/PAn-coatedshortglassfiber(SGF)composites.Therelationbetweenthemorphol-ogyandboththemechanicalandelectricalproper-tieswasinvestigated.APP–maleicanhydridecopoly-mer,awidelyusedadhesionpromoterinPP/SGFcomposites,27wasincorporatedtothecompositestoimprovetheirmechanicalproperties.Inaddition,a

JournalofAppliedPolymerScienceDOI10.1002/app

CRUZ-SILVAETAL.

novelreactordesignforPAncoatingofSGFbyinsitupolymerizationispresented.

EXPERIMENTAL

Materials

AnilinewasacquiredfromBaker(Xalostoc,Mexico)anddistilledunderreducedpressurebeforeuse.SGFTypeEwasacquiredfromVitroGroup(Monterrey,Mexico).N-phenyl-g-aminopropyltrimethoxysilanewasacommercialproductfromSylquest(Y-9669TM).Polypropylenegraftedmaleicanhydridecopolymer(PP-gMA)wasacquiredfromUniroyalChemicalunderthetradenameofPolybond3200.Themaleicanhydridecontentwasof1.0%asdeterminedbyFTIRspectroscopy.28iPPwithaMFIof3.8andden-sityof0.9g/cm3,wasacquiredfromIndelpro,Basell.Allotherreagentswereofanalyticalgradeandusedasreceived.Fibermodification

SGFwascalcinatedinafurnaceat5008Cfor3htoeliminatethesizingandcouplingagents,thenwashedwithwaterandtreatedwith10wt%hydro-chloricacidsolutionfor3hat608Ctoincreasethesilanolgroupsconcentrationonthesurface.After-wards,thefiberwasthoroughlywashedwithdis-tilledwater.Afterdrying,silanizationwasdonebyimmersionina0.025wt%N-phenyl-g-aminopropyl-trimethoxysilanesolutioninmethanolduring24h.Then,thefiberswererinsedwithmethanol,driedundernitrogenflow,andfinallyinavacuumovenfor3hat1008C.

ModificationofsilanizedSGFbyinsitupolymer-izationofanilinewasdoneina5-Ljacketedreactor(Fig.1),where1.5kgofSGFwaspacked,and4LofHCl1.0Nand20mLofanilinewereadded.Nitro-genwasbubbledtroughthepackedfiberduring2handmaintainedduringthepolymerization.Thereac-tionwasinitiatedbyadding56.4gofammoniumpersulfatedissolvedin250mLofdegassed1.0Nhy-drochloricacid.Thereactionmediawasunstirred;howevertheliquidwasrecirculatedthroughthepackedfiberusingaperistalticpumpatapproxi-mately180mL/min.Temperaturewaskeptcloseto08Cbyrecirculatingcoolingfluidbythejacket.ThreehoursafterthereactionwasinitiateddeepgreenPAn-coatedSGFwasobtained.Thesefibersweretreatedina2.0wt%solutionofsodiumcar-bonateandwashedthoroughlywithdeionizedwater.Thebluecolorofthefiberatthisstagewasindicativeofdedoping.ThePAn-coatedSGFwasredopedwithp-toluenesulfonicacid,whichunlikechlorine,hasbeenreportedtobethermallystableupto2008Casdopingagent.29Afterwardsthefiberwas

driedinaconvectionovenat708C.ThisprocedureaffordedPAn-coatedSGF,withafractionalPAnweightof4%,asdeterminedbythermogravimetry.ThisvalueindicatesthattheorganiccoatingisratheracomplexofPAnandtoluenesulfonicacidinexcess;howeveritwillbereferredsolelyasPAn.Preparationofcomposites

Priortomixing,PAn-coatedSGFwasdriedinavac-uumovenfor4hat608CwhereastheiPPandPP-gMAweredriedinavacuumovenfor12hat908C.BlendingwasperformedinaBanburyTypeMixerat2008CusingCAMrotors.iPPwasfirstmeltedat25rpmfor5min,PP-gMAwasaddedatthispointinsomeformulations.Then,thePAn-coatedSGFwasaddedgraduallyovera3-minperiodandmixedforanadditional4-minperiod.Thentheblendswereremovedfromthemixer,cooledtoroomtem-perature,andcrushedusingamillequippedwithasieve.Finally,thecompositeswerepressmoldedunder2.45MPainasteelmoldobtainingsquarecompositesof20cmÂ20cmand2.6mmwide.Characterization

Differentialscanningcalorimetry

Adifferentialscanningcalorimeter(MDSCTAInstru-ments2920)wasusedforthermalanalyses.Samplesofabout12mgwereloadedinaluminumsealed

pansandheatedatarateof108C/minfrom20to2008C,heldinthistemperaturefor3mintoerasepre-viousthermalhistory,andcooledtoroomtempera-tureatthesamerateandheldfor3min.Then,asec-ondheatingscanwasperformedfrom20to2008C.Thetemperaturesatthemaximumofthecrystalliza-tionexothermandthemeltingendotherminthesec-ondheatingscanweretakenasthemelting(Tm)andcrystallizationtemperatures(Tc),respectively.Calcula-tionsofthecrystallinefractionofthepolymericphaseweredoneusingaheatoffusionof209J/g.30Opticalandpolarizedlightmicroscopy

OpticalandpolarizedlightmicroscopyobservationsofthecompositesweredoneinaOlympusBX90microscopeusingsmallsamplesmeltedandpressedtoformafilm.Forpolarizedlightmicroscopyobser-vation,modelcompositeswerepreparedmixingindividualfibersofPAn-coatedSGFwithmeltiPPorPP/PP-gMAblendsandobservedusingaMetler-ToledoFP90heatingstage.Sampleswereheatedto2008Candheldinthistemperaturefor3minandthencooledtoroomtemperatureat58C/min.

Mechanicalproperties

Young’smodulus,elongationatbreak,andtensilestrengthofthecompositeswereacquiredusinganInstronuniversalmachine,accordingtoASTMD638.Allsampleswerecutintodogbonessamplesandconditionedfor48hat51%R.H.and228C.Thetestwasrunata5.08mm/mindeformationrate.

X-raydiffractionpattern

ASiemensD-5000X-raydiffractometerwasusedtoacquirethewide-angleX-raydiffractionpatterns(WAXD)ofthepress-moldedcomposites.Dataacquisi-tionwasdoneinthe2ymodeusingaCuKaradiationsource(intensity25mA,35kVaccelerationvoltage).Electricalresistancemeasurements

Single-fiberelectricalconductivitymeasurementsweredoneusingaKeithley2400sourcemeter.Indi-vidualfiberswereplacedbetweentwosilverpaintelectrodesoveraglassslide.Thegapbetweentheelectrodeswasmeasuredbyopticalmicroscopy.Theelectricalresistanceofthecompositeswasmea-suredusingaKeithley6517Aelectrometer/highresist-ancemeter.Samplesof2cmÂ2cmÂ0.26cmwerecutfromthecompressionmoldedcomposites,andtheinsulatingskinlayerofthecompositeswascarefullyremoved.Oppositesidesofthesamplewerecoatedwithsilverpainttoreducethecontactresistance.2390Theelectricalresistancewasmeasuredparallelandacrosstheplaneofcompression.Eachvalueistheaverageofthreemeasurements.Scanningelectronmicroscopy

SEMobservationsweredoneinaTopCom510equip-ment.CompositessamplesandPAn-coatedSGFwerefracturedunderliquidnitrogenandcoatedwithathinlayerofAu/Pd.

RESULTSANDDISCUSSION

SGFmodificationandcompositesformulationInFigure2(a)isshownaphotoofthePAn-coatedSGFafterbeingscratched.Thisimagerevealsthatthecoatingisdebondedasafree-standingthinfilm.Theinsetshowsanopticalmicroscopyimageofasinglefiberthathasauniformcoating,asindicated

FigureSGF)2(a)SEMimageofPAncoatedSGF(PAn-coatedobservedaftercroscopynextbeingtothescratched.fiber.TheAinsetdebondedshowsanthinopticalfilmmi-isPAn-coatedimageSGF.

ofasinglefiber.(b)SEMimageoftheJournalofAppliedPolymerScienceDOI10.1002/app

CRUZ-SILVAETAL.

Figureobtained3(a)coated10wtfromOpticalSGF.

%ofiPP/PAn-coatedmicroscopyimagesofthinfilmsPAn-coatedSGFSGFandcomposites(b)30wt%containingofPAn-bythehomogeneousgreencolorofthefiber.InFig-ure2(b),aSEMimageofthePAn-coatedSGFasobtainedafterthefibermodificationisshown.ThemorphologyofthePAncoatingconsistsofathinfilmwithparticlesadheredontoitssurface.Thethinfilmismostprobablygrownfromadsorbedanilineonthefibers,whereastheparticlesaregrownintheliquidphaseandlateradheredonthegrowingPAnfilm,inagreementwiththegrowthmechanismofPAn31filmspreparedbyinsituchemicalpolymeriza-tion.Theconductivityofthefiber(3.3Â10À1S/cm)issimilar26tothatreportedbyLiandRucken-stein,andishighenoughtobeobservedwithoutmetalliccoatingbyscanningelectronmicroscopy.Single-fiberconductivitymeasurementsalsopro-videdinformationonthehomogeneityofthecoat-ing.Electricalconductivityofseveralfibersfromabundlefluctuateslessthanoneorderofmagnitude,andlessthantwoordersofmagnitudefromfibersfromadifferentbundle.ByusingdensitiesofbothmaterialsandthegravimetricresultswewereabletocalculatetheaveragePAncoatingthickness($300nm)andtheelectricalconductivityofthebulk

PP/PAnCOATEDSHORTGLASSFIBERCOMPOSITESPAnofthecoating($3.6S/cmÀ1).Opticalmicros-copyimagesrevealedthatmostoftheSGFkeptthePAncoatingaftermeltprocessingat10wt%withiPP[Fig.3(a)];however,somePAnparticleswerealsopresentbecauseofdebondingofthecoating.IncreasingtheamountofPAn-coatedSGFledtoahigherdegreeofdebonding,duetofiberabrasionduringcompounding,butevenat30wt%offillerload[Fig.3(b)]alargenumberoffibersremaincoatedwithPAn.

EffectiPP/PP-ofgMAthePAn-coatedcrystallization

SGFoniPPandTheeffectofthePAn-coatedSGFonthethermalpropertiesofiPPandiPP/PP-gMAblendswasstud-iedbyDSC.InTableI,thecrystallizationtempera-turesofthecompositesareshown.TheTcofiPPis1128Cbutaftertheadditionof10wt%ofPAn-coatedSGFtheTcincrementsto124.28C.Thisnucle-atingactivityofPAn-coatedSGFtowardsiPPwaspreviouslyreported.32Thethermalpropertiesinpresenceoftheadhesionpromoterwerealsostud-ied.Theadditionof5.0wt%ofPP-gMAtopureiPPincreasedthecrystallizationtemperatureto115.78C.ThisisattributedtothepresenceofC¼¼OgroupsfromthemaleicanhydridemoietiesthatbehaveasnucleatingpointsinthenonpolariPPmatrix.33Theadditionof10wt%ofPAn-coatedSGFtotheiPP/PP-gMAblendincrementstheTcto121.58C,indicat-ingthatthenucleatingactivityofthePAnismain-tainedinthepresenceofPP-gMA,contrastingwithpreviousstudiesonnucleatingfibers,wherethenucleatingactivityissuppressedafterPP-gMAaddi-tiontothecompositeduetofiberencapsulation.34FurtheradditionofPAn-coatedSGFtothecompo-sitescausesonlyaslightincrementintheTc,sug-gestingthat10wt%providesenoughsurfacetothepolymermatrixtonucleate,andconsequentlythecrystalgrowthratebecomeslimitedabovethatcon-centrationofPAn-coatedSGF.ThedevelopmentoftranscrystallinezonesaroundPAn-coatedSGFincomposites,withandwithoutPP-gMA,isshownin

CompositionandThermalTABLEPropertiesI

oftheComposites

Composition(wt%)

PAn-coated

SampleiPPPP-gMA

SGF

TcXcTmPP000010000112.20.45164.8PP001090010122.40.47164.9PP002080020123.60.49165.1PP003070030123.90.51164.6PP05009550115.70.46164.1PP051085510121.50.47164.7PP052075520123.50.49164.9PP0530

65

5

30

124.6

0.48

164.3

2391

Figureogy(b)dediPP/PP-of4singlePolarizedgMAPAn-coatedopticalblend.AsingleSGFmicroscopyuncoatedembeddedshowingmorphol-glassinfiber(a)iPPandparison.

iniPPduringcrystallizationisshownin(c)forembed-com-Figure4(a,b),respectively.Aspreviouslyreported,notranscrystallizationisinducedbythebareglassfiber,32,33whichisshowinFigure4(c).Thewidthofthecrystallizationexothermslightlysharpensinallcompositesformulations[Fig.5(a,b)],ascomparedtothematrix,mostlikelyduetothenucleatingeffectofthePAn-coatedSGF.Thecrystallinefraction(TableI)slightlyincrementsforthecompositesasthecontentofPAn-coatedSGFdoes,indicatingthattranscrystallizationpropagatetothematrix.

SurfacetreatmentofSGFandsomepolymericfiberscaninducetranscrystallinezonesofdifferentcrystaltype,suchasthegorbform.35,36Forthisrea-son,wecarriedoutastudyofthecompositesbywideangleX-raydiffraction,shownintheFigure6.Nevertheless,theiPPandiPP/PP-gMAblend(Fig.6,curvesaandb,respectively),aswellasthecompo-sites,showedonlythecharacteristicpeaksofa-typePP.Thesepeaksappearat2yof14.18,16.98,18.58,21.18,and21.88,andcorrespondtothe(110),(040),

JournalofAppliedPolymerScienceDOI10.1002/app

(130),(111),andtheoverlapped(131)and(041)reflectionsoftheaphaseofiPP.37However,afteradditionofthePAn-coatedSGF,theratiobetweenthepeakscorrespondingtothe(110)and(040)reflec-tionplaneschange,asshownforcompositesofiPPandiPP/PP-gMAcontaining30wt%ofPAn-coatedSGF(Fig.6,curvescandd,respectively).Thischangecanbeattributedtodifferentorientationofthe38polymerchainsnearthesurfaceofthecompos-ite,whichmayhavebeeninducedbythepressmoldingprocessinpresenceofthePAn-coatedSGF.Morphologyandmechanicalproperties

TheSEMmicrographofthefracturesurfaceofthecompositeofiPPwith30%ofPAn-coatedSGFisshowninFigure7(a).ThelargenumberofdebondedfibersevidencestheweakinteractionbetweenthefibersandtheiPP.Duringthefracture,pulloutof

thefibersoccurs,indicatingthatthestressisnottransferredtothereinforcingfibers.Howevermostofthefibersarestillcoated,mostprobablywithPAn,becauseiPPhaspooradhesiontoglassfibersandthefractureofiPP/glassfibercompositesshowsmainlycleanpulled-outglassfibers.1IntheFigure7(b),thesurfacefractureoftheiPP/PP-gMAsamplecontaining30wt%ofPAn-coatedSGFisshown.BoththewettinganddispersionofthefibersimproveddrasticallyuponadditionofthePP-gMA,inpartduetothelowermeltviscosityofPP-gMA.Ontheotherhand,thehigherpolarnatureofthead-hesionpromotermakesthematrixmorecompatiblewithPAncomparedtoiPP,resultinginanincreaseintheadhesionbetweenthefiberandthematrixiniPP/PP-gMAcomposites.Inconsequence,thefrac-turemechanismnowinvolvesfiberbreakage,indi-catingthatthestresswasefficientlytransferredtothereinforcement.

TheYoung’smoduliofthecompositesareshowninFigure8(a).AlinearincrementuponadditionofthePAn-coatedSGFisdisplayedforbothtypesofcomposites.Wecalculatedtheefficiencyfactorval-ues39forbothsetofcompositesusingtheKrenchel’slaw,whereVisthevolumefractionandEthemodulus,andthesubscriptsfandmrefertothefiberandthepolymermatrix,respectively,andZistheKrenchel’sefficiencyfactor.

E¼ZEfVfþEmVm

(1)

Figurecomposites:7Typical(b)iPP/PP-g(a)MAiPPfractureblendwithwith30surfacesofcompressionmolded30wtwt%%ofofPAn-coatedPAn-coatedSGFSGF.

andTheefficiencyfactordependsonthefiberlengthandorientationandfiber-matrixinterfacialadhesion,butsincetheadditionofthePP-gMAaffectsmainlythislastparameter;thuswecanascribethechangeoftheefficiencyfactortothepresenceoftheadhesionpro-moter.Theefficiencyfactorcalculatedusingtheeq.(1)foriPP/PAn-coatedSGFcompositeswas0.16andfortheiPP/PP-gMA/PAn-coatedSGFcompo-siteswas0.33.ThetwofoldincrementwhenPP-gMAwasusedindicatestheimprovementofthefiber-ma-trixinterfacialadhesion,increasingthemodulusfrom1.9to4.5GPaat30wt%ofPAn-coatedSGF.ThetensilestrengthinbothsetofcompositesshowedareductionafteradditionofthePAn-coatedSGFduetotheeffectofinterfacialflaws[Fig.8(b)].Thisisbecausetensilestrengthismeasuredafterirreversibledeformationofthesampleandfiber-matrixvoidformation,andthusislesssensitivetoreinforcementascomparedtoYoung’smodulus.

WhereasinteractionbetweenPAn-coatedSGFandiPPismainlymechanicalbecauseofthehighrough-nessofthefiber[Fig.2(b)],severalchemicalinterac-

tionscouldarisebetweenthePAn-coatedSGFandthePP-gMA.Theaminoend-groupsofthePAncanreactwiththemaleicanhydridegroupsofthePP-gMA,producinganamidethatunderhightem-peraturecanfurtherreactbycondensation,originat-inganimidegroup,40asshowninFigure9.ThiscovalentbondingbetweenthePAnandthepolymermatrixwouldexplaininsomeextenttheincrementoftheinterfacialadhesion.Inaddition,duetopartialdebondingofthePAn-coatedSGFduetoabrasionorshearstressduringmeltprocessing,thePP-gMAcanreacteitherwiththesilanolgroups27(producedbytheacidtreatmentofthefiber)orwiththesec-ondaryaminegroupsofthesilaneontheexposedsurfaceoftheglassfiber.Electricalproperties

PP-g-MAwasaneffectiveadhesionpromoterimprovingtheYoung’smoduleofcompositesofiPP

withPAn-coatedSGF;howeveritseffectonelectricalconductivityshouldbeanalyzed.TheconductivityofthecompositesversustheamountofPAn-coatedSGFisshowninFigure10.ThecompositeofiPPwithPAn-coatedSGFincrementsitselectricalcon-ductivitybythreeordersastheamountoffiberisincreasedfrom20to30wt%,indicatingapercola-tionphenomena,whereasthecompositecontainingPP-gMAshowsonlyaslightincrement.ThisisduetoPAn-coatedSGFencapsulationafteradditionoftheadhesionpromoter,andissupportedbySEMobservations[Fig.7(b)].Similarelectricalconductiv-itybehaviorhas41beenobtainedinPP–stainlesssteelfibercompositesandethylenevinylacetate42copoly-mer/copoliamide/PAnternaryblendswhenadhe-sionpromoterswereadded.AllthecompositesÀhavesimilarelectricalconductivityvalues,inthe1013to10À12S/cmorder,regardlessofthemeasuringdirec-tion,exceptforthecompositeofiPPwith30wt%ofPAn-coatedSGF,thathasaconductivitythreeordersofmagnitudehigherwhenmeasuredperpendiculartothecompressiondirection.Thisisbecausefiberorientationisinducednearthesurfacebythecom-pressionmolding,helpingtoachievethepercolation

alongtheplaneofcompression,producingananiso-tropicelectricallyconductivecompositeatlowercon-centrationthatthosecontainingrandomorientedfibers.12Additionofmorethan30wt%ofPAn-coatedSGFnotnecessarilywouldleadtoanincreaseofelectricalconductivitybecauseoftheincreaseoffiberbreakageandabrasion.Compositesofelectri-callyconductivemetallicfibersandthermoplasticsoftenachievethepercolationat6%to10%volumefraction,13,41butinourcase,theresultingelectricalconductivityoftheiPP/PAn-coatedSGFislowerthantheexpected,indicatingthatpartialdebondingofthePAncoatingtookplaceduringprocessing.Thisisfurthersupportedbyopticalmicroscopyimages[Fig.3(b)].Nevertheless,theelectricalcon-ductivityreachedat30wt%ofloadingwasintherangeofelectrostaticdischargeapplicationsusingaverylowamountofPAninthecomposite($1.2wt%ofPAn).Tofurtherimprovethiscomposite,theadditionoflow-viscositymelt-processablePAncom-plexmayincreasetheelectricalconductivitybyact-ingasabridgebetweentheelectricallyconductivesegmentsoftheindividualfibers,asitdoesincar-bonfiber/melt-processablePAncomposites,4andbyreducingthedebondingofthePAn-coatedSGF.ThisworkdemonstratesthatPAn-coatedSGFisapoten-tialapplicationofthisconductivepolymer;howevertheprocessingconditionsmaybeoptimizedtoreducethecoatingdebondingoftheglassfiberdur-ingmeltprocessingandtoimprovetheelectricalandmechanicalpropertiesofthecomposite.

CONCLUSIONS

PAn-coatedSGFwaspreparedinanovelunstirredreactorthatovercomesproblemswithlargeunstirredanilinepolymerizations,suchasautoaccelerationandincreaseofthereactionmediatemperature.Ahighfiber/liquorweightratio(1:3)wasachieved,whilebreakageofglassfiberandabrasionofthecoatingwasavoidedbecauseoffiberimmobilization.PAn-coatedSGFshowedastrongnucleatingactivitytowardsiPP,resultinginashiftofthecrystallizationtemperatureupto128C.PolarizedlightmicroscopyshowedtheformationoftranscrystallinezonesonthePAn-coatedSGFvicinity,andX-raydiffractionpatternsindicatesthatthecrystallinephaseofboth

PP/PAnCOATEDSHORTGLASSFIBERCOMPOSITESmatrixandtranscrystallinezonesarea-type.Addi-tionofPAn-coatedSGFincrementedtheYoung’smodulusofthecomposites.MaleatedPPprovedtobeaneffectiveadhesionpromoter,increasingbothdispersionandwettingofthefibers,butaffectednegativelytheelectricalconductivityofthecompo-sitesduetofiberencapsulation.AreactionbetweenthemaleicgroupsoftheadhesionpromoterandtheterminalaminogroupsofPAnwasproposedtoexplaintheimprovementininterfacialadhesion.Theelectricalconductivityreachedwithaverylowfrac-tionofPAn(30wt%ofPAn-coatedSGF,equivalentto1.2wt%ofPAn)andisintherangeofelectro-staticdischargeapplications.

BlancaHuerta,SandraPeregrina,andEsmeraldaSaucedoareacknowledgedforthermalanalyses,mechanicalprop-ertiesevaluation,andSEMimages,respectively.EdgarAmaroisacknowledgedforelectricalconductivitymeas-urementsandR.Cruz-SilvathanksProf.FelipeAvalosforhelpfuldiscussion.

References

1.Taipalus,R.;Harmia,T.;Friedrich,K.ApplComposMater1999,6,167.

2.Jia,W.;Tchoudakov,R.;Segal,E.;Narkis,M.;Siegmann,A.JApplPolymSci2004,91,1329.

3.Faez,R.;Martin,I.M.;dePaoliM.-A.;RezendeM.C.JApplPolymSci2002,83,1568.

4.Taipalus,R.;Harmia,T.;Friedrich,K.PolymCompos2000,21,396.

5.Flandin,L.;Bidan,G.;Brechet,Y.;Cavaille

´,J.Y.PolymCompos2000,21,165.

6.Jia,W.;Tchoudakov,R.;Segal,E.;Joseph,R.;Narkis,M.;Siegmann,A.SynthMet2003,132,269.

7.Barra,G.M.O.;Jacques,L.B.;Ore

´fice,R.L.;Carneiro,J.R.G.EurPolymJ2004,40,2017.

8.Macdiarmid,A.G.CurrApplPhys2001,1,269.

9.Ikkala,O.T.;Laakso,J.;Va

¨kiparta,K.;Virtanen,E.;Ruohonen,Ja

¨rvinen,H.;Taka,T.;Passiniemi,P.;O¨H.;sterholm,J.-E.;Cao,Y.;Smith,P.;Heeger,A.J.SynthMet1995,69,97.

10.Schacklette,L.W.;Han,C.C.;Luly,M.H.SynthMet1993,57,

3532.

11.Kirkpatrick,S.RevModPhys1973,45,574.

12.Balberg,I.;Binenbaum,N.;Wagner,N.PhysRevLett1984,52,

1465.

2395

13.Xie,Q.EurPolymJ2004,40,323.

14.Weber,M.;Kamal,M.R.PolymCompos1997,18,711.

15.Sumita,M.;Sakata,K.;Hayakawa,Y.;Asai,S.;MiyasakaK.;

Tanemura,M.ColloidPolymSci1992,270,134.

16.Levon,K.;Margolina,A.;Patashinsky,A.Z.Macromolecules

1993,26,4061.

17.Genetti,W.B.;Yuan,W.L.;Grady,B.P.;O’rea,E.A.;Lai,C.

L.;Glatzhofer,D.T.JMaterSci1998,33,3085.

18.Gregory,R.V.;Kimbrell,W.C.;Kuhn,H.H.SynthMet1989,

28,823.

19.Dong,H.;Prasad,S.;Nyame,V.;Jones,W.E.ChemMater

2004,16,371.

20.Kim,S.H.;Seong,J.H.;Oh,K.W.JApplPolymSci2002,83,

2245.

21.Anbarasan,R.;Jayaseharan,J.;Sudha,M.;Gopalan,A.JAppl

PolymSci2003,90,3827.

22.Lekpittaya,P.;Yanumet,N.;Grady,B.P.;O’rear,E.A.JAppl

PolymSci2004,92,2629.

23.Geetha,S.;Kannan,K.;Kumar,S.;Trivedi,D.C.JApplPolym

Sci2005,96,2316.

24.Wu,C.G.;Chen,J.Y.ChemMater1997,9,399.

25.Wu,C.-G.;Yeh,Y.-R.;Chen,J.-Y.;Chiou,Y.-H.Polymer2001,

42,2877.

26.Li,Z.F.;Ruckenstein,E.JColloidInterfaceSci2002,251,343.27.Bikiaris,D.;Matzinos,P.;Larena,A.;Flaris,V.;Paayiotou,C.

JApplPolymSci2001,81,701.

28.Bettini,S.H.P.;Agnelli,J.A.M.PolymerTest2000,19,3.29.Lu,X.;Ng,H.Y.;Xu,J.;He,C.SynthMet2002,128,167.

30.Brandup,J.;Immergut,E.H.PolymerHandbook;Wiley:New

York,1988;Vol.3,Chapter8.

31.Riede,A.;Helmstedt,M.;Riede,V.;Zemek,J.;Stejskal,

J.Langmuir2000,16,6240.

32.Cruz-Silva,R.;Romero-Garcia,J.;Angulo-Sanchez,J.L.Mater

Sci2005,40,5107.

33.Bogoeva-Gaceva,G.;Janevski,A.;Mader,E.Polymer2001,42,

4409.

34.Hristov,V.;Vasileva,S.MacromolMaterEng2003,288,798.35.Dean,D.M.;Register,R.A.JPolymSciPartB:PolymPhys

1998,36,2821.

36.Xie,H.-Q.;Zhang,S.;Xie,D.JApplPolymSci2005,96,1414.

37.Thomann,R.;Wang,C.;Kressler,J.;Mu

¨lhaupt,R.Macromole-cules1996,29,8425.

38.Cerrada,M.L.;Prieto,O.;Peren

˜a,J.M.;Benavente,R.;Perez,E.RevPlastMod2002,84,168.

39.Krenchel,H.FibreReinforcement;AkademiskForlag:Copen-hagen,1964.

40.Major,J.S.;Blanchard,G.J.ChemMater2002,14,2567.

41.Tan,S.-T.;Zhang,M.-Q.;Rong,M.-Z.;Zeng,H.-M.Polym

Compos1999,20,406.

42.Cooper,H.;Segal,E.;Srebnik,S.;Tchoudakov,R.;Narkis,M.;

Siegmann,A.JApplPolymSci2006,101,110.

JournalofAppliedPolymerScienceDOI10.1002/app

因篇幅问题不能全部显示,请点此查看更多更全内容

Top