一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)下列选项中,比﹣2℃低的温度是()A.﹣3℃B.﹣1℃C.0℃【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.2.(3分)化简的结果是()A.4B.2C.3【解答】解:==2,故选:B.3.(3分)下列计算,正确的是()A.a2•a3=a6B.2a2﹣a=aC.a6÷a2=a3【解答】解:∵a2•a3=a5,∴选项A不符合题意;∵2a2﹣a≠a,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a2)3=a6,∴选项D符合题意.故选:D.4.(3分)如图是一个几何体的三视图,该几何体是()第7页(共26页)D.1℃D.2D.(a2)3=a6A.球B.圆锥C.圆柱D.棱柱【解答】解:由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选:C.5.(3分)已知a,b满足方程组A.2【解答】解:①+②得:5a+5b=10,则a+b=2,故选:A.6.(3分)用配方法解方程x2+8x+9=0,变形后的结果正确的是(A.(x+4)2=﹣9B.(x+4)2=﹣7C.(x+4)2=25)D.(x+4)2=7B.4,,则a+b的值为(C.﹣2)D.﹣4【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选:D.7.(3分)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间=,D.4和5之间【解答】解:由勾股定理得,OB=第8页(共26页)∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.8.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为()A.110°B.125°C.135°D.140°【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=70°,∴∠CAB=110°,∵AE平分∠CAB,∴∠CAE=∠CBA=55°,∴∠AED=∠C+∠CAE=70°+55°=125°,故选:B.9.(3分)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快第9页(共26页)D.曲线段AB的函数解析式为s=﹣3(t﹣20)2+1200(5≤t≤20)【解答】解:A、25min~50min,王阿姨步行的路程为2000﹣1200=800m,故A没错;B、设线段CD的函数解析式为s=kt+b,把(25,1200),(50,2000)代入得,解得:,∴线段CD的函数解析式为s=32t+400(25≤t≤50),故B没错;C、在A点的速度为C错误;D、当t=20时,由图象可得s=1200m,将t=20代入s=﹣3(t﹣20)2+1200(5≤t≤20)得s=1200,故D没错.故选:C.10.(3分)如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0°<α<120°)得到△AB′C′,B′C′与BC,AC分别交于点D,E.设CD+DE=x,△AEC′的面积为y,则y与x的函数图象大致()=105m/min,在B点的速度为==45m/min,故A.B.第10页(共26页)C.D.【解答】解:∵△ABC绕点A逆时针旋转α,设AB′与BC交于点F,则∠BAB′=∠CAC′=α,∠B=∠C′=30°,AB=AC=AC′,∴△ABF≌△AC′E(AAS),∴BF=C′E,AE=AF,同理△CDE≌△B′DF(AAS),∴B′D=CD,∴B′D+DE=CD+ED=x,AB=AC=2,∠B=30°,则△ABC的高为1,等于△AEC′的高,BC=2=B′C′,)=﹣x+,y=EC′×△AEC′的EC′边上的高=(2故选:B.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)计算:22﹣(﹣1)0=3.【解答】解:原式=4﹣1=3.第11页(共26页)故答案为:3.12.(3分)5G信号的传播速度为300000000m/s,将300000000用科学记数法表示为×108.【解答】解:将300000000用科学记数法表示为:3×108.故答案为:3×108.13.(3分)分解因式:x3﹣x=【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).14.(3分)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=70度.x(x+1)(x﹣1).3【解答】解:在Rt△ABE与Rt△CBF中,∴Rt△ABE≌Rt△CBF(HL).∴∠BAE=∠BCF=25°;∵AB=BC,∠ABC=90°,∴∠ACB=45°,∴∠ACF=25°+45°=70°;故答案为:70.,15.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x个人共同出钱买鸡,根据题意,可列一元一次方程为【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.第12页(共26页)9x﹣11=6x+16.故答案为:9x﹣11=6x+16.16.(3分)已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为【解答】解:设圆锥的母线长为Rcm,圆锥的底面周长=2π×2=4π,则×4π×R=10π,解得,R=5(cm)故答案为:5.17.(3分)如图,过点C(3,4)的直线y=2x+b交x轴于点A,∠ABC=90°,AB=CB,曲线y=(x>0)过点B,将点A沿y轴正方向平移a个单位长度恰好落在该曲线上,则a的值为4.5cm.【解答】解:作CD⊥x轴于D,BF⊥x轴于F,过B作BE⊥CD于E,∵过点C(3,4)的直线y=2x+b交x轴于点A,∴4=2×3+b,解得b=﹣2,∴直线为y=2x﹣2,令y=0,则求得x=1,∴A(1,0),∵BF⊥x轴于F,过B作BE⊥CD于E,∴BE∥x轴,∴∠ABE=∠BAF,∵∠ABC=90°,∴∠ABE+∠EBC=90°,∵∠BAF+∠ABF=90°,第13页(共26页)∴∠EBC=∠ABF,在△EBC和△FBA中∴△EBC≌△FBA(AAS),∴CE=AF,BE=BF,设B(m,),∵4﹣=m﹣1,m﹣3=,∴4﹣(m﹣3)=m﹣1,解得m=4,k=4,∴反比例函数的解析式为y=,把x=1代入得y=4,∴a=4﹣0=4,∴a的值为4.故答案为4.18.(3分)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+PD的最小值等于3.【解答】解:如图,过点P作PE⊥AD,交AD的延长线于点E,第14页(共26页)∵AB∥CD∴∠EDP=∠DAB=60°,∴sin∠EDP=∴EP=∴PB+PDPD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A=∴BE=3故答案为3三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)解不等式﹣x>1,并在数轴上表示解集.=【解答】解:4x﹣1﹣3x>3,4x﹣3x>3+1,x>4,将不等式的解集表示在数轴上如下:20.(8分)先化简,再求值:(m+)÷,其中m=﹣2.【解答】解:原式=÷==m2+2m,•第15页(共26页)当m=﹣2时,原式=m(m+2)=(=2﹣221.(8分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?﹣2)(﹣2+2)【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,∴△ABC≌△DEC(SAS),∴AB=DE.22.(9分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,求取出的2个球中有1个白球、1个黄球的概率.【解答】解:画树状图为:,共有6种等可能的结果数,其中取出的2个球中有1个白球、1个黄球的结果数为3,所以取出的2个球中有1个白球、1个黄球的概率==.23.(8分)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.第16页(共26页)【解答】解:设每套《三国演义》的价格为x元,则每套《西游记》的价格为(x+40)元,依题意,得:解得:x=80,经检验,x=80是所列分式方程的解,且符合题意.答:每套《三国演义》的价格为80元.24.(10分)8年级某老师对一、二班学生阅读水平进行测试,并将成绩进行了统计,绘制了如下图表(得分为整数,满分为10分,成绩大于或等于6分为合格,成绩大于或等于9分为优秀).=2×,平均分一班二班7.26.85方差2.114.28中位数78众数68合格率92.5%85%优秀率20%10%根据图表信息,回答问题:(1)用方差推断,二水平更好些;(2)甲同学用平均分推断,一班阅读水平更好些;乙同学用中位数或众数推断,二班阅读水平更好些.你认为谁的推断比较科学合理,更客观些.为什么?【解答】解:(1)从方差看,二班成绩波动较大,从众数、中位数上看,一班的成绩较好,第17页(共26页)班的成绩波动较大;用优秀率和合格率推断,一班的阅读故答案为:二,一.(2)乙同学的说法较合理,众数和中位数是反映一组数据集中发展趋势和集中水平,由于二班的众数、中位数都比一班的要好.25.(9分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1,以边AC上一点O为圆心,OA为半径的⊙O经过点B.(1)求⊙O的半径;(2)点P为劣弧AB中点,作PQ⊥AC,垂足为Q,求OQ的长;(3)在(2)的条件下,连接PC,求tan∠PCA的值.【解答】解:(1)作OH⊥AB于H.在Rt△ACB中,∵∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∵OH⊥AB,∴AH=HB=1,∴OA=AH÷cos30°=.(2)如图2中,连接OP,PA.设OP交AB于H.第18页(共26页)∵=,∴OP⊥AB,∴∠AHO=90°,∵∠OAH=30°,∴∠AOP=60°,∵OA=OP,∴△AOP是等边三角形,∵PQ⊥OA,∴OQ=QA=OA=.(3)连接PC.在Rt△ABC中,AC=∵AQ=QO=AO=∴QC=AC﹣AQ=﹣BC=.=,,∵△AOP是等边三角形,PQ⊥OA,∴PQ=1,∴tan∠ACP===.26.(10分)已知:二次函数y=x2﹣4x+3a+2(a为常数).(1)请写出该二次函数的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,求a的取值范围.【解答】解:(1)∵二次函数y=x2﹣4x+3a+2=(x﹣2)2+3a﹣2,第19页(共26页)∴该二次函数开口向上,对称轴为直线x=2,顶点坐标为(2,3a﹣2),其性质有:①开口向上,②有最小值3a﹣2,③对称轴为x=2.(2)∵二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,∴x2﹣4x+3a+2=2x﹣1,整理为:x2﹣6x+3a+3=0,∴△=36﹣4(3a+3)>0,解得a<2,把x=4代入y=2x﹣1,解得y=2×4﹣1=7,把(4,7)代入y=x2﹣4x+3a+2得7=16﹣16+3a+2,解得a=,故该二次函数的图象在x≤4的部分与一次函数y=2x﹣1的图象有两个交点,a的取值为≤a<2.27.(13分)如图,矩形ABCD中,AB=2,AD=4.E,F分别在AD,BC上,点A与点C关于EF所在的直线对称,P是边DC上的一动点.(1)连接AF,CE,求证四边形AFCE是菱形;(2)当△PEF的周长最小时,求的值;(3)连接BP交EF于点M,当∠EMP=45°时,求CP的长.【解答】证明:(1)如图:连接AF,CE,AC交EF于点O∵四边形ABCD是矩形,∴AB=CD,AD=BC,AD∥BC∴∠AEO=∠CFO,∠EAO=∠FCO,第20页(共26页)∵点A与点C关于EF所在的直线对称∴AO=CO,AC⊥EF∵∠AEO=∠CFO,∠EAO=∠FCO,AO=CO∴△AEO≌△CFO(AAS)∴AE=CF,且AE∥CF∴四边形AFCE是平行四边形,且AC⊥EF∴四边形AFCE是菱形;(2)如图,作点F关于CD的对称点H,连接EH,交CD于点P,此时△EFP的周长最小,∵四边形AFCE是菱形∴AF=CF=CE=AE,∵AF2=BF2+AB2,∴AF2=(4﹣AF)2+4,∴AF=∴AE==CF∴DE=∵点F,点H关于CD对称∴CF=CH=∵AD∥BC∴=(3)如图,延长EF,延长AB交于点N,过点E作EH⊥BC于H,交BP于点G,过点B作BO⊥FN于点O,第21页(共26页)由(2)可知,AE=CF=,BF=DE=∵EH⊥BC,∠A=∠ABC=90°∴四边形ABHE是矩形∴AB=EH=2,BH=AE=∴FH=1∴EF=∵AD∥BC∴△BFN∽△AEN∴∴∴BN=3,NF=∴AN=5,NE=∵∠N=∠N,∠BON=∠A=90°∴△NBO∽△NEA∴∴=,∴BO=,NO=∵∠EMP=∠BMO=45°,BO⊥EN第22页(共26页)∴∠OBM=∠BMO=45°∴BO=MO=∴ME=EN﹣NO﹣MO=∵AB∥EH∴△BNM∽△GEM∴∴∴EG=∴GH=EH﹣EG=∵EH∥CD∴△BGH∽△BPC∴∴∴CP=28.(13分)定义:若实数x,y满足x2=2y+t,y2=2x+t,且x≠y,t为常数,则称点M(x,y)为“线点”.例如,点(0,﹣2)和(﹣2,0)是“线点”.已知:在直角坐标系xOy中,点P(m,n).(1)P1(3,1)和P2(﹣3,1)两点中,点P2是“线点”;(2)若点P是“线点”,用含t的代数式表示mn,并求t的取值范围;(3)若点Q(n,m)是“线点”,直线PQ分别交x轴、y轴于点A,B,当|∠POQ﹣∠AOB|=30°时,直接写出t的值.【解答】解:(1)∵当M点(x,y),若x,y满足x2﹣2y=t,y2﹣2x=t且x≠y,t为常数,则称点M为“线点”,又∵P1(3,1),则32﹣2×1=7,(1)2﹣2×3=﹣5,7≠﹣5,∴点P1不是线点;第23页(共26页)∵P2(﹣3,1),则(﹣3)2﹣2×1=7,12﹣2×(﹣3)=7,7=7,∴点P2是线点,故答案为:P2;(2)∵点P(m,n)为“线点”,则m2﹣2n=t,n2﹣2m=t,∴m2﹣2n﹣n2+2m=0,m2﹣2n+n2﹣2m=2t,∴(m﹣n)(m+n+2)=0,∵m≠n,∴m+n+2=0,∴m+n=﹣2,∵m2﹣2n+n2﹣2m=2t,∴(m+n)2﹣2mn﹣2(m+n)=2t,即:(﹣2)2﹣2mn+2×2=2t,∴mn=4﹣t,∵m≠n,∴(m﹣n)2>0,∴m2﹣2mn+n2>0,∴(m+n)2﹣4mn>0,∴(﹣2)2﹣4mn>0,∴mn<1,∵mn=4﹣t,∴t>3;(3)设PQ直线的解析式为:y=kx+b,则,解得:k=﹣1,∵直线PQ分别交x轴,y轴于点A、B,∴∠AOB=90°,∴△AOB是等腰直角三角形,第24页(共26页)∵|∠AOB﹣∠POQ|=30°,∴∠POQ=120°或60°,∵P(m,n),Q(n,m),∴P、Q两点关于y=x对称,①若∠POQ=120°时,如图1所示:作PC⊥x轴于C,QD⊥y轴于D,作直线MN⊥AB.∵P、Q两点关于y=x对称,∴∠PON=∠QON=∠POQ=60°,∵△AOB是等腰直角三角形,∴∠AON=BON=45°,∴∠POC=∠QOD=15°,在OC上截取OT=PT,则∠TPO=∠TOP=15°,∴∠CTP=30°,∴PT=2PC=2n,TC=∴﹣m=n+2n,n,由(2)知,m+n=﹣2,解得:m=﹣1﹣,n=﹣1,由(2)知:mn=4﹣t,t>3,∴(﹣1﹣解得:t=6,②若∠POQ=60°时,如图2所示,)(﹣1+)=4﹣t,作PD⊥x轴于D,QC⊥y轴于C,作直线MN⊥AB.第25页(共26页)∵P、Q两点关于y=x对称,∴∠PON=∠QON=∠POQ=30°,∵△AOB是等腰直角三角形,∴∠AON=BON=45°,∴∠POD=∠QOC=15°,在OD上截取OT=PT,则∠TPO=∠TOP=15°,∴∠DTP=30°,∴PT=2PD=﹣2n,TD=﹣∴﹣m=﹣n﹣2n,n,由(2)知,m+n=﹣2,解得m=﹣1﹣,n=﹣1+,由(2)知:mn=4﹣t,t>3,∴(﹣1﹣解得:t=)(﹣1+,.)=4﹣t,综上所述,t的值为:6或第26页(共26页)
因篇幅问题不能全部显示,请点此查看更多更全内容