搜索
您的当前位置:首页正文

全国新高考数学文科二轮复习作业精练精析专题限时集训(十)(含答案详析)

来源:爱够旅游网
专题限时集训(十)

[第10讲 数列求和及数列的简单应用]

(时间:45分钟)

1.若数列{an}是等差数列,且a3+a7=4,则数列{an}的前9项和S9等于( ) A.9 B.18 C.36 D.72

11

2.已知数列{bn}是首项为,公比为的等比数列,则数列{nbn}的前n项和Tn=( )

22

1n-11nA.2-2 B.2-2 n+2n+1

C.2-n D.2-n 22

1,则数列{cn}的前n项和Rn=( ) 3.若数列{cn}的通项cn=(2n-1)·3n+1n

A.1-n B.1-n 33n+1n

C.1+n D.1+n

33

1

4.已知等差数列{an},a1=3,d=2,前n项和为Sn,设Tn为数列S的前n项和,则

n

n

Tn=( )

n11n-11-A. B. 2n+12(n+2)2n+12(n+2)

1n11+1n+C. D. 2n+12(n+2)2n+12(n+2)

2n

5.数列{cn}的通项为cn=,则其前n项和Sn=________.

(2n-1)(2n+1-1)

6.数列{2n·3n}的前n项和Tn=________. 7.已知数列{an}的前n项和为Sn,把{Sn}的前n项和称为“和谐和”,用Hn来表示.对

n

于an=3,其“和谐和”Hn=( )

3n+2-6n-93n+1-6n-9A. B.

443n+1+6n-93n+6n-9

C. D.

441

-8.设两数列{an}和{bn},an=3前n项的和为( )

1-(4n-1)(-3)n1+3n(4n+1)

A. B.

16161-3n(4n+1)1-(4n+1)(-3)n

C. D. 1616

n-1

n+1n+1n+1bn

,bn=++…+,则数列a的

n1×22×3n(n+1)

118

的前n项和为,则n=________.9.已知数列{an},an+1=an+2,a1=1,数列

37anan+1

10.已知等差数列{an}的前n项和为Sn,且a2=5,S9=99,

4

则数列2的前n项和Tn=________.

an-1

11.已知数列{an}是首项为1,公差为20的等差数列,数列{bn}是首项为1,公比为3

的等比数列,则数列{an·bn}的前n项和为________.

12.某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3 000元,以后逐年递增3 000元,则这辆汽车报废的最佳年限(即使用多少年的年平均费用最少)是________.

13.数列{an}的前n项和为Sn=2n1-2,数列{bn}是首项为a1,公差为d(d≠0)的等差数列,且b1,b3,b9成等比数列.

(1)求数列{an}与数列{bn}的通项公式;

2

(2)若cn=(n∈N*),求数列{cn}的前n项和Tn.

(n+1)bn

14.已知数列{an}满足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).

1

(1)求证:数列a是等差数列并求数列{an}的通项公式;

n

1

(2)设bn=anan+1,求证:b1+b2+…+bn<.

2

15.已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2

成等差数列.

(1)求数列{an}的通项公式;

1

(2)设bn=log2an,cn=,记数列{cn}的前n项和Tn.若对n∈N*,Tn≤k(n+4)恒

bnbn+1成立,求实数k的取值范围.

专题限时集训(十)

9(a1+a9)9(a3+a7)

1.B [解析] S9===18.

221n

2.C [解析] 因为bn=()n,nbn=n,

22n-1n1234

所以Tn=+2+3+4+…+n1+n,①

22222-2n-1234n

2Tn=1++2+3+…+n2+n1,②

2222-2-111n

②-①得Tn=1++2+…+n1-n,

222-2

n+2n

即Tn=-n=2-n.故选C.

1221-2

3.A [解析] Rn=c1+c2+c3+…+cn,

1112131nRn=1×3+3×3+5×3+…+(2n-1)×3,① 1213141n1n+11R=1×3+3×3+5×3+…+(2n-3)×3+(2n-1)×3,②

3n

①式减②式得

1n+11n21121314R=+2-(2n-1)×3,

3n33+3+3+…+3

2

1n-1131-31n+122(n+1)1n21则Rn=+2×-(2n-1)×3=-×3,

33133

1-3n+1

故Rn=1-n,故选A.

3

n(a1+an)

4.D [解析] ∵Sn==n(n+2),

2

1111-1∴==n. Snn(n+2)2n+2

11111111111111111

∴Tn=(-+-+-+…+-+-)=(+--)=

2132435n-1n+1nn+2212n+1n+22nn

[+].故选D. n+12(n+2)

2n+1-22n115.n1 [解析] cn==-, nn+1nn+1+2-1(2-1)(2-1)2-12-1

111111

则Sn=c1+c2+c3+…+cn=(-2)+(2-3)+…+(n-n1)=1

2-12-12-12-12-12+-12n+1-2

-n1=n1.

++2-12-1

1

1

1-2

n

13123nn-·3n+1+ [解析] Tn=2·6.3+4·3+6·3+…+2n·3,① 22

3Tn=2·32+4·33+6·34+…+2n·3n1,②

13+

n-·3n+1+. ①-②得-2Tn=2·31+2·32+2·33+…+2·3n-2n·3n1,则Tn=223n+2-6n-93n312n

7.A [解析] Sn=(3-1),Hn=(3+3+…+3-1×n)=.故选A.

224

1n+1n+1n+11+1+…+8.D [解析] bn=++…+=(n+1)·n(n+1)1×22×31×22×3n(n+1)

1111-1=(n+1)[1-2+2-3+…+n]=n.

n+1

bn-

记数列a的前n项的和为Sn,则Sn=1+2×(-3)+3×(-3)2+…+n×(-3)n1,

n

-3Sn=-3+2×(-3)2+3×(-3)3+…+n×(-3)n, 两式相减,得

n

1-(-3)-

4Sn=1+(-3)+(-3)2+…+(-3)n1-n×(-3)n=-n×(-3)n,故Sn=

4

1-(4n+1)(-3)n

. 16

9.18 [解析] 因为an+1=an+2,所以数列是公差为2的等差数列,所以an=2n-1.又111-1111111111-11

因为=an)=a1,所以Sn=2(a-a+a-a+…+a-=22a2a++n11223nn1anan+1an+11-118

2n+1=37,解得n=18. 

n10. [解析] 设等差数列{an}的首项为a1,公差为d. n+1

∵a2=5,S9=99,

9(2a1+8d)

∴a1+d=5,=99,

2

解得a1=3,d=2, ∴an=2n+1.

4

设bn=2(n∈N+).

an-1

∵an=2n+1,∴a2n-1=4n(n+1),

4111

∴bn===-,

4n(n+1)n(n+1)nn+1

1111-11n∴Tn=b1+b2+b3+…+bn=1-2+2-3+…+n=1-=. n+1n+1n+1(20n-29)·3n+29

11. [解析] an=1+20(n-1)=20n-19,

2-

bn=3n1,

令Sn=1×1+21×3+41×32+…+(20n-19)·3n1,①

则3Sn=1×3+21×32+…+(20n-39)·3n1+(20n-19)·3n,② ①-②得,-2Sn=1+20×(3+3+…+3

2

n-1

)-(20n-19)·3=1+20×

n

3(1-3n-1)

1-3

(20n-19)·3n=(29-20n)·3n-29,

(20n-29)·3n+29

所以Sn=. 2

12.10 [解析] 设最佳使用年限为x年,年平均费用为y万元,则y=

x(x+1)

15+1.5x+×0.3

215

=+0.15x+1.65≥4.65,此时x=10.

xx

13.解:(1)当n≥2时,an=Sn-Sn-1=2n1-2n=2n,

因为a1=S1=211-2=2=21,也满足上式, 所以数列{an}的通项公式为an=2n.

b1=a1=2,则由b1,b3,b9成等比数列,即b23=b1b9, 得(2+2d)2=2×(2+8d), 解得d=0(舍去)或d=2,

所以数列{bn}的通项公式为bn=2n.

21

(2)cn==,

(n+1)bnn(n+1)

11111111

数列{cn}的前n项和Tn=++…+=1-+-+…+-223n1×22×33×4n×(n+1)1n

=1-=. n+1n+1n+1

11

14.证明:(1)已知an-an-1+2anan-1=0,两边同除以anan-1得-=2.

anan-1

1

则数列a是以1为首项,2为公差的等差数列,

n

1

11于是=2n-1,an=(n∈N*).

an

2n-1

1

(2)由(1)知bn=,则

(2n-1)(2n+1)

11111111

b1+b2+…+bn=++…+=(1-+-+…+

3351×33×5(2n-1)(2n+1)22n-1-

111

)=(1-)<. 2n+122n+12

15.解:(1)设数列{an}的公比为q,∵5S1,S3,3S2成等差数列, ∴2S3=5S1+3S2,

即2(a1+a1q+a1q2)=5a1+3(a1+a1q), 化简得2q2-q-6=0,

3

解得q=2或q=-.

2

3

因为数列{an}的各项均为正数,所以q=-不合题意,

2

所以数列{an}的通项公式为an=2n. (2)由bn=log2an得bn=log22n=n,

1111

则cn===-,

nbnbn-1n(n+1)n+1111111n

Tn=1-+-+…+-=1-=. 223nn+1n+1n+11

≤k(n+4), n+1

nn1

∴k≥=2=. 4(n+1)(n+4)n+5n+4n++5n

444∵n++5≥2 n·+5=9,当且仅当n=,即n=2时等号成立,

nnn111∴≤,因此k≥,

499n++5n

1故实数k的取值范围为9,+∞.

n

因篇幅问题不能全部显示,请点此查看更多更全内容

Top