您好,欢迎来到爱够旅游网。
搜索
您的当前位置:首页通辽市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

通辽市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

来源:爱够旅游网
通辽市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________

一、选择题

1. 棱长为2的正方体的8个顶点都在球O的表面上,则球O的表面积为( ) A.4 B.6 C.8 D.10

xy2„02. 已知实数x[1,1],y[0,2],则点P(x,y)落在区域x2y1„0 内的概率为( )

2xy2…0A.

3 4B.

3 8C.

1 4D.

1 8【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.

*3. 在数列{an}中,a115,3an13an2(nN),则该数列中相邻两项的乘积为负数的项是

( )

A.a21和a22 B.a22和a23 C.a23和a24 D.a24和a25 4. 某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为 1的半圆,则其侧视图的面积是( )

A. B. C.1 D.

5. 如图,ABCDA1B1C1D1为正方体,下面结论:① BD//平面CB1D1;② AC1BD;③ AC1平面CB1D1.其中正确结论的个数是( )

A. B. C. D. 6. “a>b,c>0”是“ac>bc”的( )

第 1 页,共 16 页

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

7. 已知函数f(x)2sin(x)(0小距离为

2)与y轴的交点为(0,1),且图像上两对称轴之间的最

,则使f(xt)f(xt)0成立的t的最小值为( )1111] 22A. B. C. D.

36328. 若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A.l∥α B.l⊥α

C.l⊂α D.l与α相交但不垂直

9. 若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为( ) A.(0,+∞) B.(﹣1,0)∪(2,+∞) 10.已知双曲线

C.(2,+∞)

D.(﹣1,0)

=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=±x,则

该双曲线的方程为( ) A.

=1

B.

﹣y2=1 C.x2﹣

=1 D.

=1

12x+ax存在与直线3xy0平行的切线,则实数a的取值范围是( ) 2A. (0,) B. (,2) C. (2,) D. (,1]

11.函数f(x)=lnx+【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,个数为( ) A.0

B.1

C.2

D.以上都不对

,A=60°,则满足条件的三角形

二、填空题

13.已知z,ω为复数,i为虚数单位,(1+3i)z为纯虚数,ω=

,且|ω|=5

,则= .

,则复数ω= .

14.B,C的对边分别为a,b,c,在△ABC中,角A,已知sinAsinB+sinBsinC+cos2B=1.若C=

15.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直

第 2 页,共 16 页

径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)

22216.已知△ABC的面积为S,三内角A,B,C的对边分别为,,.若4Sabc, 则sinCcos(B4)取最大值时C .

17.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记则S的最小值是 .

18.已知函数

为定义在区间[﹣2a,3a﹣1]上的奇函数,则a+b= .

三、解答题

19.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上. (Ⅱ)若

(I)求证:AD⊥PB;

,则当λ为何值时,平面BEM⊥平面PAB?

(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.

20.CE=1,CE为边向Rt△BEC外作正△EBA∠EBC=30°,∠BEC=90°,如图,在Rt△ABC中,现在分别以BE,和正△CED.

(Ⅰ)求线段AD的长;

(Ⅱ)比较∠ADC和∠ABC的大小.

第 3 页,共 16 页

21.某中学为了普及法律知识,举行了一次法律知识竞赛活动.下面的茎叶图记录了男生、女生各 10名学生在该次竞赛活动中的成绩(单位:分).

已知男、女生成绩的平均值相同. (1)求的值;

(2)从成绩高于86分的学生中任意抽取3名学生,求恰有2名学生是女生的概率.

22.一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.

第 4 页,共 16 页

23.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:

分数段 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100] 率分布直方图.

理科人数 正 正 文科人数 正 (1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频

第 5 页,共 16 页

(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.

24.已知函数f(x)=alnx﹣x(a>0). (Ⅰ)求函数f(x)的最大值;

(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);

(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α

第 6 页,共 16 页

通辽市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参) 一、选择题

1. 【答案】B 【解析】

点:球与几何体 2. 【答案】B 【

3. 【答案】C 【解析】

点:等差数列的通项公式.

4. 【答案】B

【解析】解:由三视图知几何体的直观图是半个圆锥,

又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆, ∴半圆锥的底面半径为1,高为

的直角三角形,

即半圆锥的侧视图是一个两直角边长分别为1和

第 7 页,共 16 页

故侧视图的面积是故选:B.

【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

5. 【答案】D 【解析】

点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.

【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直. 6. 【答案】A

【解析】解:由“a>b,c>0”能推出“ac>bc”,是充分条件,

由“ac>bc”推不出“a>b,c>0”不是必要条件,例如a=﹣1,c=﹣1,b=1,显然ac>bc,但是a<b,c<0, 故选:A.

【点评】本题考查了充分必要条件,考查了不等式的性质,是一道基础题

7. 【答案】A 【解析】

点:三角函数的图象性质. 8. 【答案】B

第 8 页,共 16 页

【解析】解:∵ =(1,0,2),=(﹣2,0,4), ∴=﹣2, ∴∥, 因此l⊥α. 故选:B.

9. 【答案】C

【解析】解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣令2x﹣2﹣

>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,

结合函数的定义域知,f′(x)>0的解集为(2,+∞). 故选:C.

10.【答案】B

【解析】解:已知抛物线y2=4则双曲线的焦点坐标为(即c=

x的焦点和双曲线的焦点重合, ,0),

又因为双曲线的渐近线方程为y=±x, 则有a2+b2=c2=10和=, 解得a=3,b=1. 所以双曲线的方程为:故选B.

【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.

11.【答案】D 【解析】因为f(x)因为x+﹣y2=1.

11xa,直线的3xy0的斜率为3,由题意知方程xa3(x>0)有解,

xx1?2,所以a£1,故选D. x,A=60°,

=

=1,

12.【答案】B 【解析】解:∵a=3,∴由正弦定理可得:sinB=

第 9 页,共 16 页

∴B=90°,

即满足条件的三角形个数为1个. 故选:B.

【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.

二、填空题

13.【答案】 ±(7﹣i) .

【解析】解:设z=a+bi(a,b∈R),∵(1+3i)z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴ 又ω=

=.

=

,|ω|=

,∴

把a=3b代入化为b2=25,解得b=±5,∴a=±15. ∴ω=±

故答案为±(7﹣i).

=±(7﹣i).

【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.

14.【答案】=

【解析】解:在△ABC中,角A,B,C的对边分别为a,b,c, ∵已知sinAsinB+sinBsinC+cos2B=1, ∴sinAsinB+sinBsinC=2sin2B.

再由正弦定理可得 ab+bc=2b2,即 a+c=2b,故a,b,c成等差数列. C=

,由a,b,c成等差数列可得c=2b﹣a,

由余弦定理可得 (2b﹣a)2=a2+b2﹣2abcosC=a2+b2+ab. 化简可得 5ab=3b2,∴ =. 故答案为:.

【点评】本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题.

15.【答案】 3.3

第 10 页,共 16 页

【解析】

解:如图BC为竿的高度,ED为墙上的影子,BE为地面上的影子. 设BC=x,则根据题意 =

AB=x,

在AE=AB﹣BE=x﹣1.4, 则

=

,即

=

,求得

x=3.3(米)

故树的高度为3.3米, 故答案为:3.3.

【点评】本题主要考查了解三角形的实际应用.解题的关键是建立数学模型,把实际问题转化为数学问题.

16.【答案】【解析】

 4考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1

【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于

第 11 页,共 16 页

难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现ab 及

b2 、a2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为

正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式

111abc. absinC,ah,(abc)r,2224R .

17.【答案】

【解析】解:设剪成的小正三角形的边长为x,则:S=令3﹣x=t,t∈(2,3), ∴S=立; 故答案为:

. =

=

= ,(0<x<1)

,当且仅当t=即t=2时等号成

18.【答案】 2 .

【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数, ∴定义域关于原点对称, 即﹣2a+3a﹣1=0, ∴a=1, ∵函数∴f(﹣x)=即b•2x﹣1=﹣b+2x, ∴b=1. 即a+b=2, 故答案为:2.

为奇函数,

=﹣

三、解答题

19.【答案】

【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,

第 12 页,共 16 页

∴AD⊥平面PAB.又PB⊂平面PAB, ∴AD⊥PB.

(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点, 当M为PD的中点时,EM∥AD, ∴EM⊥平面PAB,∵EM⊂平面BEM, ∴平面BEM⊥平面PAB. 此时,

(III)设CD的中点为F,连接BF,FM 由(II)可知,M为PD的中点. ∴FM∥PC.

∵AB∥FD,FD=AB, ∴ABFD为平行四边形. ∴AD∥BF,又∵EM∥AD, ∴EM∥BF.

∴B,E,M,F四点共面.

∴FM⊂平面BEM,又PC⊄平面BEM, ∴PC∥平面BEM.

【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.

20.【答案】

【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=在△ADE中,AE=BE=由余弦定理可得AD=

(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°, ∴问题转化为比较∠ADE与∠EBC的大小. 在△ADE中,由正弦定理可得

,DE=CE=1,∠AED=150°,

=

第 13 页,共 16 页

∴sin∠ADE=∴∠ADE<30°

<=sin30°,

∴∠ADC<∠ABC.

【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.

21.【答案】(1) a7;(2) P【解析】

试题分析: (1)由平均值相等很容易求得的值;(2)成绩高于86分的学生共五人,写出基本事件共10个,可得恰有两名为女生的基本事件的个数,则其比值为所求.

3. 10其

中恰有2名学生是女生的结果是(96,93,87),(96,91,87),(96,90,87)共3种情况. 所以从成绩高于86分的学生中抽取了3名学生恰有2名是女生的概率P考点:平均数;古典概型.

【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较时也可以看成是无序的,如(1,2)(2,1)相同.(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用P(A)1P(A)求解较好. 22.【答案】 在Rt△EOF中,

【解析】解:如图,设所截等腰三角形的底边边长为xcm,

复杂问题中基本事件数的探求.另外在确定基本事件时,(x,y)可以看成是有序的,如1,2与2,1不同;有

3.1 10第 14 页,共 16 页

∴∴

依题意函数的定义域为{x|0<x<10}

【点评】本题是一个函数模型的应用,这种题目解题的关键是看清题意,根据实际问题选择合适的函数模型,注意题目中写出解析式以后要标出自变量的取值范围.

23.【答案】

了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.

【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映

(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分. 平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5, 即估计选择理科的学生的平均分为79.5分. 24.【答案】 【解析】解:(Ⅰ)令

,所以x=a.

易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0. 故函数f(x)在(0,a)上递增,在(a,+∞)递减. 故f(x)max=f(a)=alna﹣a.

(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.

第 15 页,共 16 页

所以,当x∈(0,a)时,g′(x)<0.

所以g(x)<g(0)=0,即f(a+x)>f(a﹣x). (Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).

由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β). 又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.

【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.

第 16 页,共 16 页

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务