搜索
您的当前位置:首页正文

具有光催化活性的纳米空心球的制备

来源:爱够旅游网
AppliedSurfaceScience256(2010)2754–2758ContentslistsavailableatScienceDirect

AppliedSurfaceScience

journalhomepage:www.elsevier.com/locate/apsusc

Aone-potmethodtoprepareN-dopedtitaniahollowsphereswithhighphotocatalyticactivityundervisiblelightYanhuiAoa,b,*,JingjingXuc,SongheZhanga,b,DegangFudaKeyLaboratoryofIntegratedRegulationandResourceDevelopmentonShallowLakes,MinistryofEducation,HohaiUniversity,Nanjing210098,ChinaCollegeofEnvironmentalScienceandEngineering,HohaiUniversity,Nanjing210098,ChinacCollegeofEnvironmentalScienceandEngineering,NanjingUniversityofInformationScienceandTechnology,Nanjing210044,ChinadStateKeyLaboratoryofBioelectronics,SoutheastUniversity,Nanjing210096,ChinabARTICLEINFOABSTRACTArticlehistory:

Received24July2009Receivedinrevisedform9November2009Accepted9November2009Availableonline13November2009Keywords:PhotocatalysisTitaniaHollowspheresN-dopedVisiblelightN-dopedtitaniahollowspheres(NTHS)werepreparedbyaone-pothydrothermalmethodusingureaasprecursorofnitrogen.ThepreparedhollowsphereswerecharacterizedbyX-raydiffraction(XRD),transmissionelectronmicroscope(TEM),scanningelectronmicroscope(SEM),Brunauer–Emmett–Teller(BET),X-rayphotoelectronspectroscopy(XPS)andUV–visdiffusereflectancespectrum(DRS).Thephotocatalyticactivityofas-preparedtitaniahollowsphereswasdeterminedbydegradationofReactiveBrilliantReddyeX-3B(C.I.reactivered2)undervisiblelightirradiation,andwascomparedtonon-dopedtitaniahollowspheresandcommercialP25titania.Resultsindicatedthattheas-preparedNTHSshowedhighestphotocatalyticactivity.ß2009ElsevierB.V.Allrightsreserved.1.IntroductionSemiconductormediatedphotocatalyticoxidationandreductionofferspotentiallyafacileandcheapmethodforremovinginorganicandorganicpollutantsfromwastewaters.Amongvariousoxidesemiconductorphotocatalyst,titaniumdioxidehasprovedtobethemostsuitablecatalystsforwidespreadenvironmentalapplicationbecauseofitsbiologicalandchemicalinertness,strongoxidizingpower,non-toxicityandlong-termstabilityagainstphotoandchemicalcorrosion[1–7].However,itstechnologicalapplicationseemslimitedbyseveralfactors,amongwhichthemostrestrictiveoneistheneedofusinganultraviolet(UV)light,wavelength(l)<387nm,asexcitationsourceduetoitswideband-gap(3.2eVforanatase)[8].Therefore,itcanonlycapturelessthan5%ofthesolarirradianceattheEarth’ssurface.Forthesakeofefficientuseofsunlight,oruseofthevisibleregionofthespectrum,thetechnologyofenlargingtheabsorptionscopeofTiO2maythenappearasanappealingchallengefordevelopingthefuturegenerationofphotocatalysts.ManyworksreportedthatdopingTiO2withnonmetallicelements,suchasnitrogen[9–14],sulphur[15],carbon[16],shifttheopticalabsorptionedgeofTiO2towardlowerenergy,therebyincreasingthephotocatalyticactivityinvisibleregion.Ontheotherhand,weknowthatthemorphologyandmicrostructuresareveryimportantforthephotocatalyticactivityoftitania.Therefore,fabricationoftitaniahollowmicrosphereshasrecentlyattractedenormousattentionbecauseoftheirlowdensity,highsurfacearea,goodsurfacepermeabilityaswellaslargelight-harvestingefficiencies[17].Itisalsoexpectedthathigherenergyconversionefficiencyandphotocatalyticactivitycouldbeachievedusingtitaniahollowmicrospheresasphoto-catalysts.Untilnow,hollownanospheresoftitaniahavebeensynthesizedbyavarietyoftemplatesmethods.Thesacrificialtemplatesincludingmonodispersedsilica[18],carbonspheres[19–22]orpolystyrenespheres[23–26].Inthisarticle,fortheenhancementofvisible-light-drivenphotocatalyticactivityoftitaniaandovercomingthecomplexityoftemplatingmethodsforpreparationoftitaniahollowspheres.Afacileandtemplate-freeroutestoN-dopedtitaniahollowsphereshavebeendeveloped.Then,westudiedtheirapplicationtophotocatalyticdecompositionofReactiveBrilliantReddyeX-3B(C.I.reactivered2)inaqueoussolution.2.Experimental2.1.Samplepreparation*Correspondingauthorat:KeyLaboratoryofIntegratedRegulationandResourceDevelopmentonShallowLakes,MinistryofEducation,CollegeofEnvironmentalScienceandTechnology,HohaiUniversity,Nanjing210098,China.E-mailaddress:andyao@seu.edu.cn(Y.Ao).0169-4332/$–seefrontmatterß2009ElsevierB.V.Allrightsreserved.doi:10.1016/j.apsusc.2009.11.023ToprepareN-dopedtitaniahollowspheres(NTHS),thedetailedprocedurewasasfollowing:first,0.37gofNH4Fand0.6gofureaweredissolvedinto15mLdistilledwatertoformsolutionA.Y.Aoetal./AppliedSurfaceScience256(2010)2754–27582755

Secondly,2.4gofTi(SO4)2wasdissolvedinto20mLdilutedH2SO4(1M)toformsolutionB.Afterwards,solutionAwasmixedwithsolutionBundervigorousstirring.ThemolarratioofNH4F:ur-ea:Ti(SO4)2was1:1:1.Finally,themixedsolutionwastransferredtoa50mLTeflon-linedautoclave,whichwasfilledwithdistilledwaterupto80%ofthetotalvolume.Theautoclavewassealedandkeptat1808Cfor10h.Theproductswerecentrifugated,washedandredispersedinethanolandwaterforthreecycles,respectively.Theobtainedsampleswerethendriedat808Cfor2hundervacuum.Thetitaniahollowspheres(THS)werepreparedforcomparisonbythesamewaywithoutaddingurea.2.2.CharacterizationThestructurepropertiesweredeterminedbyX-raydiffract-ometer(XD-3A,ShimadzuCorporation,Japan)usinggraphitemonochromaticcopperradiation(Cu-Ka)at40kV,30mAoverthe2urange20–808.Thehollowmorphologieswerecharacterizedbytransmissionelectronmicroscopy(TEM,JEM2000EX)andscanningelectronmicroscopy(SEM,Sirion,FEI).TheUV–visabsorptionspectraofthetitaniahollowsphereswereobservedwithShimadzuUV-2100equippedwithanintegratingsphere.BETsurfaceareameasurementswerecarriedoutbyN2adsorptionat77KusinganASAP2020instrument.ThebindingenergywasidentifiedbyX-rayphotoelectronspectroscopy(XPS)withMg-Karadiation(ESCALBMK-II).2.3.PhotocatalyticactivityThephotocatalyticactivityofpreparedsampleswasevaluatedbyphotocatalyticdegradationofReactiveBrilliantReddyeX-3B(C.I.reactivered2)inaqueoussolution.0.1gofsamplewasaddedinto200mLof25mgLÀ1X-3Bsolution.Thesuspensionwasstirredindarkfor30mintoobtainadsorption–desorptionequilibriumofX-3Bbeforeillumination.A290Whalogenlamp(InstrumentalCorporationofBeijingNormalUniversity)withalightfiltercuttingthelightbelow400nmwasusedasvisiblelightsource.Atadefinedtimeinterval,5mLsuspensionwasremoved.AndthentheconcentrationofX-3BwasanalyzedusingtheUV–visspectrophotometerat535nm.3.Resultsanddiscussion3.1.CharacterizationofN-dopedtitaniahollowspheres(NTHS)ThepreparationofNTHSisbasedonthenewlydevelopedchemicallyinducedself-transformationmechanismbyYuetal.[27,28],whichisrelatedtofluoride-mediatedself-transformationfromsolidtitaniabylocalizedOstwaldripening.Amongtheprocess,preferentialdissolutionoftheinteriorparticlesiscoupledwiththedepositionoflooselypackednanoparticlesonthesurfaceofexternalshell.AtypicalTEMimageoftheas-preparedNTHSisshowninFig.1(a).Thestrongcontrastbetweenthedarkedgesandbrightcentersindicatesthehollowstructureoftitaniaspheres.Itcanalsobeseenthatthesizeofhollowspheresareca.500nm.Theoutersurfaceofthehollowspheresisrough,whichindicatedtheyarecomposedofalotoflooselypackednanoparticles.Suchahollowstructuremayenhanceadsorptionandmasstransportationofcontaminations,thusenhancethephotocatalyticactivity.ThecorrespondingSEMimageisshowninFig.1(b),itcanalsobeseenthatthesizeofthehollowspheresareabout500nm.FromtheBETmeasurement,thespecificsurfaceareasare213.5m2gÀ1forNTHS,whichismuchhigherthanthevalue(50m2gÀ1)ofP25titania.Thecrystalstructureoftitaniumdioxidegreatlyaffectsphotocatalyticactivity.Amorphoustitaniaseldomdisplaysphoto-activityduetosomenon-bridgingoxygeninbulktitania,whoseTi–Oatomicarrangementdefectscanactasrecombinationcentersofphoto-generatedelectron–holepairs.Additionally,differentcrystalphaseswillalsoaffectphotocatalysis.Generally,theanatasephaseisreportedwithhighphotocatalyticactivity.Therefore,thephasecharacterizationofNTHSwasinvestigatedbyX-raydiffraction(XRD)analysisandtheobtainedpatternisshowninFig.2.Asshowninthefigure,theparticleshadformedanatasephasesincethecharacteristicdiffractionpeaksofanatase(majorpeaks:25.48,38.08,48.08,54.78,63.18)wereevidentinthesample.NootherpeakssuchasN–OandTi–Nappeared.ItmaybeduetothereasonthatthecontentofNwastoolittletobedetectedinthephotocatalyst.Furthermore,thefactofnarrowpeaksindicatesthatthehollowtitaniaspheresareofhighcrystallinity.Thesurfacechemicalcompositionsandchemicalstatesofas-preparedsampleswereinvestigatedusingXPS.TheresultsshowthatNTHScontainsTi,O,NandC.TheCelementcanbeascribedtotheadventitioushydrocarbonfromtheXPSinstrument.Thehigh-resolutionXPSspectraoftheN1sregiononthesurfaceofNTHS(asshowninFig.3)showsthattherearetwoXPSpeaksatabout399.8and396.5eV.Thepeakat396.5eVisassociatedwiththeTi–Nbond[9,29].Whilethepeakat399.8eVisattributedtoN–O,N–Nbond[30].Thehigh-resolutionXPSspectraoftheTi2pregiononthesurfaceofNTHSareshowninFig.4.ItcanbeseenthatTi2p3/2(458.1eV)andTi2p1/2(463.8eV)ofNHTStransfertolowerbindingenergycomparedtopuretitania.ThetransferisascribedtothefactthatthesubstitutionofOintitanialatticebyNelementandformationofO–Ti–Nband[31].Fromalloftheresultswecanconcludethatnitrogenwassuccessfulincorporatedintothetitaniabyourmethod.Fig.5comparestheUV–visdiffusereflectancespectrumofNTHSandP25.Theresultsindicatedthatdopingnitrogenbythismethodcangiverisetoaclearred-shiftintheopticalresponseoftitaniahollowspheres.Furthermore,highervisibleabsorbance(400–700nm)wasobservedforNTHS.FromtheresultswecanFig.1.(a)TEMimageand(b)SEMimageofNTHS.2756Y.Aoetal./AppliedSurfaceScience256(2010)2754–2758Fig.2.XRDpatternsofNTHS.Fig.3.High-resolutionXPSspectrumofN1sregionofNTHS.predictthatNTHSwouldshowhighphotocatalyticactivityundervisiblelightirradiation.3.2.PhotocatalyticactivityInordertoinvestigatethephotocatalyticactivityofas-preparedNTHS,degradationexperimentsofReactiveBrilliantRedX-3BFig.4.High-resolutionXPSspectrumofTi2pregionofNTHS.Fig.5.ThediffusereflectanceUV–visspectraofNTHSandP25.(C.I.reactivered2)werestudiedundervisiblelightandresultsareshowninFig.6.Theblankexperimentwithoutcatalystswasalsoinvestigated.Andthevaluecanbeneglectedwithabout2%ofconversionafter2hirradiation.AsshowninFig.6,itpresentshighphotocatalyticactivityforthedegradationofX-3Binaqueoussolution;about72%ofX-3Bisdegradedwithin120min.WhileforP25andTHS,thedegradedpercentare13and31%,respectively.Furthermore,weinvestigatedthekineticsofX-3BdegradationbydifferentsamplesthroughLangmuir–Hinshelwoodmodel:ÀdCkrKaCdt¼1þKaC(1)where(ÀdC/dt)isthedegradationrateofX-3B,CistheX-3Bconcentrationinthesolution,tisreactiontime,krisareactionrateconstant,andKaistheadsorptioncoefficientofthereactant.KaCisnegligiblewhenvalueofCisverysmall.Asaresult,Eq.(1)canbedescribesafirst-orderkinetics.SettingEq.(1)attheinitialconditionsofthephotocatalyticprocedure,whent=0,C=C0,itcanbedescribedasfollows:ln󰀂C0󰀃C¼kappÂt(2)wherekappisapparentrateconstant,chosenasthebasickineticparameterforthedifferentphotocatalysts,sinceitenablesonetoFig.6.VariationsoftheUV–visabsorptionspectraofX-3BwiththeirradiationtimeinthepresenceofNTHS.Y.Aoetal./AppliedSurfaceScience256(2010)2754–27582757

Fig.7.KineticsofX-3BdisappearanceinthepresenceofNTHS,THSandP25.determineaphotocatalyticactivityindependentofthepreviousadsorptionperiodinthedarkandtheconcentrationofX-3Bremaininginthesolution[32].Thevariationsinln(C0/C)asafunctionofirradiationtimearegiveninFig.7.Theobtainedapparentrateconstantskappare0.011,0.001and0.0031minÀ1forNTHS,P25andTHS,respectively.ItcanbeseenthatNTHSshowsmuchhigherphotocatalyticactivityforX-3Bdegradationthanothertwosamples.ThesuperiorphotocatalyticactivityisassociatedwiththecooperativedopingeffectsofNonthephysicochemicalproper-tiesaswellasthehollowstructureofNTHS.Firstofall,itcanbeseenfromtheUV–visdiffusereflectancespectrumofNTHSthatitresultsinaintenseincreaseinabsorptioninthevisiblelightregionandared-shiftintheabsorptionedge.Theband-gapnarrowingoftitaniabyN-dopingleadstoenhancedphoto-catalyticactivityofNTHSundervisiblelight.Becausetheprepareddopedsamplescanbeactivatedbyvisiblelight,thusmoreelectronsandholescanbegeneratedandparticipateinthephotocatalyticredoxreactions.Secondly,theNTHSwithlargesurfaceareaandporousstructuresmayalsoplayanimportantroleindeterminingthephotocatalyticactivityoftheas-preparedsample.Largerspecificsurfaceareaprovidesmoresurfaceactivesitesfortheadsorptionofcontaminationmoleculesthusmakesthephotocatalyticprocessmoreefficient.Furthermore,thehollowsphericalstructuresallowmultireflectionsofirradiationlightwithintheirinteriorcavities,endowingthemwithenhancedlight-harvestingandthuswithhigherphotocatalyticactivity[33].4.ConclusionsInthepresentarticle,wereportasimpleone-potmethodforthepreparationofN-dopedtitaniahollowspheres.Theas-preparedtitaniahaslargespecificsurfaceareaandshowsaclearred-shiftintheopticalresponse.Thephotocatalyticactivityofas-preparedhollowtitaniasphereswasdeterminedbydegradationofReactiveBrilliantReddyeX-3B(C.I.reactivered2)undervisiblelightirradiation,andcomparedtocommercialP25titania.ResultsshowthatthephotocatalyticactivityofNTHSenhancedalot.Thisapproachprovidesagreen,simpleandeconomicalmethodforpreparationofN-dopedtitaniawithhollowstructuresandhighvisiblelightresponsiveactivity.Acknowledgments

WearegratefulforgrantsfromtheNationalKeyBasicResearchon‘‘WaterPollutionControlandGovernance’’ofChina(No.2008ZX07101-008),theNationalNaturalScienceFoundationofChina(No.50830304),theBasicResearchProjectofJiangsuprovince(BK2008041)andChinaPostdoctoralScienceFoundation(No.20090450133).References

[1]J.G.Yu,H.G.Yu,B.Cheng,X.J.Zhao,J.C.Yu,W.K.Ho,Theeffectofcalcination

temperatureonthesurfacemicrostructureandphotocatalyticactivityofTiO2thinfilmspreparedbyliquidphasedeposition,J.Phys.Chem.B107(2003)13871–13879.

[2]J.C.Zhao,T.X.Wu,K.Q.Wu,K.Oikawa,H.Hidaka,N.Serpone,Photoassisted

degradationofdyepollutants.3.DegradationofthecationicdyerhodamineBinaqueousanionicsurfactant/TiO2dispersionsundervisiblelightirradiation:evi-dencefortheneedofsubstrateadsorptiononTiO2particles,Environ.Sci.Technol.32(1998)2394–2400.

[3]Y.M.Xu,C.H.Langford,UV-orvisible-light-induceddegradationofX3BonTiO2nanoparticles:theinfluenceofadsorption,Langmuir17(2001)897–902.

[4]K.Honda,A.Fujishima,Electrochemicalphotolysisofwateratasemiconductor

electrode,Nature238(1972)37–38.

[5]V.Stengl,S.Bakardjieva,N.Murafa,V.Houskova,K.Lang,Excellentantimicrobial

propertiesofmesoporousanataseTiO2andAg/TiO2compositefilms,Micropor.Mesopor.Mater.110(2008)370–378.

[6]M.A.Fox,M.T.Dulay,Heterogeneousphotocatalysis,Chem.Rev.93(1993)341–

357.

[7]Y.Liu,X.L.Wang,F.Yang,X.R.Yang,Excellentantimicrobialpropertiesof

mesoporousanataseTiO2andAg/TiO2compositefilms,Micropor.Mesopor.Mater.114(2008)431–439.

[8]T.S.Yang,M.C.Yang,C.B.Shiu,W.K.Chang,Mi.S.Wong,EffectofN2ionfluxonthe

photocatalysisofnitrogen-dopedtitaniumoxidefilmsbyelectron-beamevapora-tion,Appl.Surf.Sci.252(2006)3729–3736.

[9]R.Asahi,T.Morikawa,T.Ohwaki,Visible-lightphotocatalysisinnitrogen-doped

titaniumoxides,Science293(2001)269–271.

[10]Z.S.Lin,Newinsightintotheoriginofvisiblelightphotocatalyticactivityof

nitrogen-dopedandoxygen-deficientanataseTiO2,J.Phys.Chem.B109(2005)20948–20952.

[11]J.L.Gole,J.D.Stout,C.Burda,Y.B.Lou,X.B.Chen,Highlyefficientformationof

visiblelighttunableTiO2ÀxNxphotocatalystsandtheirtransformationatthenanoscale,J.Phys.Chem.B108(2004)1230–1240.

[12]T.L.Ma,M.Akiyama,E.Abe,I.Imai,High-efficiencydye-sensitizedsolarcellbased

onanitrogen-dopednanostructuretitaniaelectrode,NanoLett.5(2005)2543–2547.

[13]M.Sathish,B.Viswanathan,R.P.Viswanath,C.S.Gopinath,Synthesis,character-ization,electronicstructure,andphotocatalyticactivityofnitrogen-dopedTiO2catalyst,Chem.Mater.17(2005)6349–6353.

[14]J.Premkumar,Developmentofsuper-hydrophilicityonnitrogen-dopedTiO2thin

filmsurfacebyphotoelectrochemicalmethodundervisiblelight,Chem.Mater.16(2004)3980–3981.

[15]J.C.Yu,W.K.Ho,J.G.Yu,H.Y.Yip,P.K.Wong,J.C.Zhao,Efficientvisible-light-inducedphotocatalyticdisinfectiononsulfur-dopednanocrystallinetitania,Environ.Sci.Technol.39(2005)1175–1179.

[16]S.U.M.Khan,M.Al-shahry,W.B.Ingler,Efficientphotochemicalwatersplittingby

achemicallymodifiedn-TiO2,Science297(2002)2243–2245.

[17]J.G.Yu,S.W.Liu,H.G.Yu,Microstructuresandphotoactivityofmesoporous

anatasehollowmicrospheresfabricatedbyfluoride-mediatedself-transforma-tion,J.Catal.249(2007)59–66.

[18]Z.B.Li,J.M.Li,Y.X.Ke,Y.G.Zhang,H.C.Zhang,F.Q.Li,J.Y.Xing,Two-step

templatingroutetomacroporousorhollowsphereoxides,J.Mater.Chem.11(2001)2930–2933.

[19]Y.H.Ao,J.J.Xu,X.W.Shen,D.G.Fu,C.W.Yuan,Asimplemethodforthepreparation

ofhollowtitaniasphere,Catal.Commun.9(2008)2574–2577.

[20]Y.H.Ao,J.J.Xu,D.G.Fu,C.W.Yuan,Visible-lightresponsiveC,N-codopedtitania

hollowspheresforX-3Bdyephotodegradation,Micropor.Mesopor.Mater.118(2009)382–386.

[21]M.B.Zheng,J.M.Cao,X.Chang,J.Wang,J.S.Liu,X.J.Ma,Preparationofoxide

hollowspheresbycolloidalcarbonspheres,Mater.Lett.60(2006)2991–2993.

[22]X.Sun,Y.Li,Colloidalcarbonspheresandtheircore/shellstructureswithnoble-metalnanoparticles,Angew.Chem.Int.Ed.Eng.43(2004)597–601.

[23]A.Syoufian,K.Nakashima,Degradationofmethyleneblueinaqueousdispersion

ofhollowtitaniaphotocatalyst:optimizationofreactionbyperoxydisulfateelectronscavenger,J.ColloidInterfaceSci.313(2007)213–218.

[24]A.Syoufian,O.H.Satriya,K.Nakashima,Photocatalyticactivityoftitaniahollow

spheres:photodecompositionofmethyleneblueasatargetmolecule,Catal.Commun.8(2007)755–759.

[25]S.B.Yoon,J.Y.Kim,J.H.Kim,S.G.Park,J.Y.Kim,C.W.Lee,J.S.Yu,Templatesynthesis

ofnanostructuredsilicawithhollowcoreandmesoporousshellstructures,Curr.Appl.Phys.6(2006)1059–1063.

[26]A.Syoufian,Y.Inoue,M.Yada,K.Nakashima,Preparationofsubmicrometer-sized

titaniahollowspheresbytemplatingsulfonatedpolystyrenelatexparticles,Mater.Lett.61(2007)1572–1575.

[27]J.G.Yu,H.Guo,S.A.Davis,S.Mann,Fabricationofhollowinorganicmicrospheres

bychemicallyinducedself-transformation,Adv.Funct.Mater.16(2006)2035–2041.

2758Y.Aoetal./AppliedSurfaceScience256(2010)2754–2758[31]R.Sanjines,H.Tang,H.Berger,ElectronicstructureofanataseTiOoxide,J.Appl.

Phys.75(1994)2945–2951.

[32]Y.H.Ao,J.J.Xu,X.W.Shen,D.G.Fu,C.W.Yuan,Magneticallyseparablecomposite

photocatalystwithenhancedphotocatalyticactivity,J.Hazard.Mater.160(2008)295–300.

[33]J.G.Yu,S.W.Liu,M.H.Zhou,Enhancedphotocatalyticactivityofhollowanatase

microspheresbySn4+incorporation,J.Phys.Chem.C112(2008)2050–2057.

[28]H.G.Yu,J.G.Yu,S.W.Liu,S.Mann,Template-freehydrothermalsynthesisof

CuO/Cu2Ocompositehollowmicrospheres,Chem.Mater.19(2007)4327–4334.

[29]N.C.Saha,H.G.Tompkens,Titaniumnitrideoxidationchemistry:anX-rayphoto-electronspectroscopystudy,J.Appl.Phys.71(1992)3072–3076.

[30]T.Morikawa,R.Asahi,T.Ohwaki,K.Aoki,Y.Taga,Band-gapnarrowingoftitanium

dioxidebynitrogendoping,Jpn.J.Appl.Phys.40(2001)561–563.

因篇幅问题不能全部显示,请点此查看更多更全内容

Top