您好,欢迎来到爱够旅游网。
搜索
您的当前位置:首页惯性

惯性

来源:爱够旅游网
惯性

在物理学里,惯性(inertia)是物体抵抗其运动状态被改变的性质。物体的惯性可以用其质量来衡量,质量越大,惯性也越大。艾萨克·牛顿在巨著《自然哲学的数学原理》里定义惯性为:惯性,或物质固有的力,是一种抵抗的现象,它存在于每一物体当中,大小与该物体相当,并尽量使其保持现有的状态,不论是静止状态,或是匀速直线运动状态。

更具体而言,牛顿第一定律表明,存在某些参考系,在其中,不受外力的物体都保持静止或匀速直线运动。也就是说,从某些参考系观察,假若施加于物体的合外力为零,则物体运动速度的大小与方向恒定。惯性定义为,牛顿第一定律中的物体具有保持原来运动状态的性质。满足牛顿第一定律的参考系,称为惯性参考系。稍后会有关于惯性参考系的更详细论述。

早期认知

文艺复兴之前,在西方哲学里最被广泛接受的运动理论是建立于大约 335 BC至322 BC的亚里斯多德的学说。亚里斯多德表明,假设没有“暴力”(violent force)施加,所有(在地球上的)物体最终都会停止运动,静止于其自然位置,但只要有暴力促使物体运动,物体会持续其运动状态。当抛物体被抛掷出去时,抛掷者的暴力转移到抛物体周围的空气,使这些空气流动,成为新的推动者,继续不停地促使抛物体移动。[3][4]

在之后大约两千年内,亚里斯多德的运动概念广泛地被接受,只有几位著名哲学家对这概念提出质疑。例如,在第6世纪,约翰·斐劳波诺斯严厉批评亚里斯多德关于物体运动的不一致理论:亚里斯多德认为真空不可能存在,因为,在真空里,没有任何介质促使物体移动,但是,他又表示,介质的阻力与其密度成正比:假设空气的密度是水的一半,则物体通过同样路径所用掉的时间,在空气中是在

[5]

水中的一半,那么,物体通过真空所用掉得时间应该更少。斐劳波诺斯主张,介质只能阻碍抛物体的运动,不能促使抛物体移动;在真空里,没有任何介质,抛物体反而比较容易移动。[6]斐劳波诺斯建议,促成抛物体持续运动的因素与周围介质无关,而是在运动刚开始时,加诸于抛物体的某种性质,这性质逐渐在运动时消耗殆尽。虽然这建议与当今惯性概念仍有所差异,至少它已朝着正确方向跨出基要的脚步。[7][4]但是,在那时期与之后很多年,他的想法没有得到重视,很多亚里斯多德派学者都给予强烈反对,包括汤玛斯·阿奎那(约1225年-1274年)和艾尔伯图斯·麦格努斯(约1200年-1280年)在内。只有奥卡姆的威廉(约1288年-1348年)反对亚里斯多德物理学。他质疑亚里斯多德所提到的运动的“推动者”到底在哪里?虽然他否定亚里斯多德公理的正确性,认为抛物体的运动不需要随时随地都有推动者伴随。但是,他也没能给出任何替代答案。[6]

冲力说

主条目:冲力说

在第14世纪,法国哲学家让·布里丹提出冲力说。他称呼促使物体运动的性质为冲力,这冲力是由推动者传送给物体,促使物体运动。他否定了冲力会自己消耗殆尽的想法。布里丹认为永存不朽的冲力是被空气阻力或磨擦力等等逐渐抵销,只要冲力大于阻力或磨擦力等等,物体就会继续移动。[8][9]布里丹的冲力与物体密度和体积成正比;速度越大,冲力也越大;物体内部的物质越多,就能够接受越多的冲力。[6]

从日常观察中,布里丹想出许多反例来反驳亚里斯多德的理论:[6]

• •

假设一个陀螺或磨石绕着固定轴旋转,请问空气怎样在这些物体的后面推动旋转? 现在,为这旋转物量身打造一个铸模,将这铸模包在旋转物外面,不让在旋转物与铸模之间有任何空隙。这样,在旋转物与铸模之间,不会存在任何空气,请问空气怎样推动旋转?

设想一艘拖船拖曳著另一艘船, 航行于风平浪静的静止大海。现在,将拖绳切断,则因为海水阻力与空气阻力,被拖的船会慢慢的停止航行。在这时候,站在甲板上、面向船前方的海员会感觉到空 气对着脸面吹拂,从船前方吹向船后方,试图减慢船的航行;他不会感觉到空气对着后背吹拂,从船后方吹向船前方,试图推动船的航行。

思考石头与羽毛这两种物质,空气应该比较容易推动羽毛。但是,为什么同样地分别将石头与羽毛抛射出去,石头移动的距离比羽毛远了很多?

尽管与惯性的现代概念很相似,布里丹只把自己的理论视为亚里斯多德基本哲学的微小修正,坚持许多其他亚里斯多德派的观念,例如,他认为运动状态与静止状态是两种不同的状态。布里丹又主张,冲力不但适用于直线运动,也适用于圆周运动,促使物体(例如,星体)呈圆周运动。[9]

[10][9]

萨克森的阿尔伯特是布里丹的学生。他将布里丹的学说广传至意大利与中欧。在牛津大学墨顿学院的思想家赫特斯柏立的威廉最先表述出平均速率定理:在同样时间间隔内,假若等速度物体的速度是等加速度物体的最初速度和最终速度的总和的一半,则此二物体移动的距离相等。这定理是自由落体定律的基础。早在伽利略·伽利莱之前,他们就已做实验证实了这定理。[11]

尼克尔·奥里斯姆又将他们的研究结果加以发挥,他创立了用曲线图来解释运动定律的方法,并且用几何方法证明平均速度定理。奥里斯姆于1377年发表的著作《天地通论》 提出,当自由落体在加速时,其重量并没有增加,而是冲力增加。假设,挖掘一条直线隧道,从地球表面的A点,穿过地心,挖掘到地球表面的B点,然后将一个重 物落入这隧道,则它会从A点,经过地心,移动到B点,就好像单摆从一边摇摆到另外一边。但是,从地心到B点的路途中,它是呈升起状态,而重量只能造成物体 掉落,因此冲力与重量不同。[12]

[13]

这些研究发展逐渐地侵蚀了学者们对于亚里斯多德物理学的信心。在伽利略发表惯性原理之前不久,于1585年,意大利物理学者乔望尼·本尼得棣将越加成

[14]

熟的冲力说为只能适用于直线运动: 本尼得棣特别举出甩石机弦的例子,当旋转甩石机弦时,其皮袋内的石头,由于被其皮绳约束,原本的直线运动被迫

变为圆周运动;但若将石头扔出,脱离皮绳的约束,则石头会呈直线运动,而其直线轨迹会正切圆周于扔出点。

经典惯性与相对论

伽利略·伽利莱主张,施加外力改变的是物体的速度而不是位置;维持物体速度不变,不需要任何外力。为了证实他的主张,伽利略做了一个思想实验。如右图所示,让静止的小球从点A滚下斜面AB, 滚到最底端后,小球又会滚上斜面BC,假设两块斜面都非常的平滑、摩擦系数极小,而且空气阻力微弱,以至于可以忽略不计,则小球会滚到与点A同高度的点 C;假设斜面是BD、BE或BF,小球也同样地会滚到与点A同高度的位置。只不过斜面越长,往上滚的时候,单位时间内速度的减少量会变得越小。假设斜面逐 渐延长,最后变成水平面BH,则基于“连续性原则”该小球“本应当”回到与点A同高度的位置,然而由于事实上BH是水平的,小球永远不可能滚到先前的高 度,而速度的减少量将变成0,因此小球会不停地呈匀速直线运动。伽利略总结,假若不碰到任何阻碍,那么运动中的物体会持续地做匀速直线运动。他将此称为惯性定律[19]

阿尔伯特·爱因斯坦于1905年在论文《论动体的电动力学》里提出的狭义相对论,是建立于伽利略与牛顿研究出来的惯性与惯性参考系。尽管这划时代的理论实际地改变了许多牛顿概念,像质量、能量、距离,那时后,爱因斯坦的惯性概念与牛顿的原本概念丝毫没有任何差异。实际而言,整个理论是建立于牛顿的惯性定义。但这也使得狭义相对论的相对性原理只能应用于惯性参考系。在这种参考系里,不受外力的物体,必定保持其静止或匀速直线运动状态。为了处理这局限,爱因斯坦于1916年发表论文《广义相对论的基础》提出广义相对论。这理论能够应用于非惯性参考系。但是,为了达到这目的,爱因斯坦发觉,他必需使用到弯曲时空的新概念,而不是传统的牛顿力的概念,来重新定义几个基础概念(例如引力)。

因为这重新定义,爱因斯坦还以测地误差重新定义了惯性的概念,这又引起一些微妙但重要的结果。根据广义相对论,当处理大尺寸问题时,不能使用与倚赖传统牛顿惯性。幸运地,对于足够小的时空区域,狭义相对论仍旧适用,惯性的内涵与工作仍旧与经典模型相同。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务