一、选择题
1. 在曲线y=x2上切线倾斜角为A.(0,0)
的点是( )
C.(,
)
B.(2,4) D.(,)
2. 下列说法中正确的是( ) A.三点确定一个平面 B.两条直线确定一个平面
C.两两相交的三条直线一定在同一平面内 D.过同一点的三条直线不一定在同一平面内 3. 下列函数中,为奇函数的是( ) A.y=x+1
B.y=x2 C.y=2x D.y=x|x|
24. 已知函数f(x)f'(1)xx1,则A.10f(x)dx( )
7755 B. C. D. 6666【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.
2xy205. 若变量x,y满足约束条件x2y40,则目标函数z3x2y的最小值为( )
x10A.-5 B.-4 C.-2 D.3 6. 如图,ABCDA1B1C1D1为正方体,下面结论:① BD//平面CB1D1;② AC1BD;③ AC1平面CB1D1.其中正确结论的个数是( )
A. B. C. D.
7. 若集合A={-1,1},B={0,2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( )
A5
第 1 页,共 17 页
B4 C3 D2
8. 如图,在正方体ABCDA1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是( )
D1 C1 A1 B1 P D C A B A.直线 B.圆
C.双曲线 D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 9. 双曲线A.
的渐近线方程是( ) B.
C.
D.
10.集合1,2,3的真子集共有( )
A.个 B.个 C.个 D.个 11.下列哪组中的两个函数是相等函数( ) A.fx=x,gx44x44x24,gxx2 B.fx=x2C.fx1,gx1,x033 D.fx=x,gxx 1,x0
B.14
C.28
D.30
12.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为Sn,则S11+S20=( ) A.﹣16
二、填空题
13.如果定义在R上的函数f(x),对任意x1≠x2都有x1f(x1)+x2f(x2)>x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数
①f(x)=3x+1 ②f(x)=()x+1
第 2 页,共 17 页
③f(x)=x2+1 ④f(x)=其中是“H函数”的有 (填序号)
1的一条对称轴方程为x,则函数f(x)的最大值为( ) 26A.1 B.±1 C.2 D.2 14.已知函数f(x)asinxcosxsinx2【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
15.已知数列{an}中,2an,an+1是方程x2﹣3x+bn=0的两根,a1=2,则b5= .
16.正方体ABCD﹣A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为 . 17.已知z是复数,且|z|=1,则|z﹣3+4i|的最大值为 .
18.已知数列{an}中,a11,函数f(x)
23an2xx3an1x4在x1处取得极值,则 32an_________. 三、解答题
19.已知梯形ABCD中,AB∥CD,∠B=所示的几何体
(Ⅰ)求几何体的表面积
(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.
,DC=2AB=2BC=2
,以直线AD为旋转轴旋转一周的都如图
第 3 页,共 17 页
20.对于任意的n∈N*,记集合En={1,2,3,…,n},Pn=
.若集合A满足下
列条件:①A⊆Pn;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω. 如当n=2时,E2={1,2},P2=所以P2具有性质Ω.
(Ⅰ)写出集合P3,P5中的元素个数,并判断P3是否具有性质Ω. (Ⅱ)证明:不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B. (Ⅲ)若存在A,B具有性质Ω,且A∩B=∅,使Pn=A∪B,求n的最大值.
21.在锐角△ABC中,角A、B、C的对边分别为a、b、c,且(Ⅰ)求角B的大小;
(Ⅱ)若b=6,a+c=8,求△ABC的面积.
22.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x. (1)求当x>0时f(x)的解析式; (2)画出函数f(x)在R上的图象; (3)写出它的单调区间.
.
.∀x1,x2∈P2,且x1≠x2,不存在k∈N*,使x1+x2=k2,
第 4 页,共 17 页
23.设数列{an}的前n项和为Sn,a1=1,Sn=nan﹣n(n﹣1). (1)求证:数列{an}为等差数列,并分别求出an的表达式; (2)设数列(3)设Cn=
24.(本小题满分10分)选修4-1:几何证明选讲
如图,四边形ABCD外接于圆,AC是圆周角BAD的角平分线,过点C的切线与AD延长线交于点E,AC交BD于点F.
的前n项和为Pn,求证:Pn<;
,Tn=C1+C2+…+Cn,试比较Tn与
的大小.
第 5 页,共 17 页
(1)求证:BDCE;
(2)若AB是圆的直径,AB4,DE1,求AD长
第 6 页,共 17 页
石门县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参) 一、选择题
1. 【答案】D
2
【解析】解:y'=2x,设切点为(a,a)
∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1, ∴a=,
2
的点是(,).
在曲线y=x上切线倾斜角为故选D.
【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
2. 【答案】D
【解析】解:对A,当三点共线时,平面不确定,故A错误; 对B,当两条直线是异面直线时,不能确定一个平面;故B错误;
∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,对C,不一定在同一个平面,如墙角的三条棱;故C错误; 对D,由C可知D正确.
故选:D.
3. 【答案】D
【解析】解:由于y=x+1为非奇非偶函数,故排除A; 由于y=x为偶函数,故排除B;
2x
由于y=2为非奇非偶函数,故排除C; 由于y=x|x|是奇函数,满足条件, 故选:D.
【点评】本题主要考查函数的奇偶性的判断,属于基础题.
4. 【答案】B
5. 【答案】B
第 7 页,共 17 页
【解析】
31xz,直线系在可22行域内的两个临界点分别为A(0,2)和C(1,0),当直线过A点时,z3x2y224,当直线过C点
试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系y时,z3x2y313,即的取值范围为[4,3],所以Z的最小值为4.故本题正确答案为B.
考点:线性规划约束条件中关于最值的计算. 6. 【答案】D 【解析】
考
点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.
【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直. 7. 【答案】C
【解析】由已知,得{z|z=x+y,x∈A,y∈B}={-1,1,3},所以集合{z|z=x+y,x∈A,y∈B}中的元素的个数为3.
第 8 页,共 17 页
8. 【答案】D.
第Ⅱ卷(共110分)
9. 【答案】B
【解析】解:∵双曲线标准方程为其渐近线方程是整理得y=±x. 故选:B.
=0,
,
【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.
10.【答案】C 【解析】
考点:真子集的概念. 11.【答案】D111] 【解析】
第 9 页,共 17 页
考
点:相等函数的概念. 12.【答案】B ∴S11=(=﹣16,
n
)+(a2+a4+a6+a8+a10)
【解析】解:∵an=(﹣1)(3n﹣2),
=﹣(1+7+13+19+25+31)+(4+10+16+22+28) S20=(a1+a3+…+a19)+(a2+a4+…+a20) =﹣(1+7+…+55)+(4+10+…+58) =﹣=30, 故选:B.
+
∴S11+S20=﹣16+30=14.
【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.
二、填空题
13.【答案】 ①④
【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立, ∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立, 即函数f(x)是定义在R上的不减函数(即无递减区间); ①f(x)在R递增,符合题意; ②f(x)在R递减,不合题意;
③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意; ④f(x)在R递增,符合题意;
第 10 页,共 17 页
故答案为:①④.
14.【答案】A 【
解
析
】
15.【答案】 ﹣10 .
2
【解析】解:∵2an,an+1是方程x﹣3x+bn=0的两根, ∴2an+an+1=3,2anan+1=bn, 则b5=2×17×(﹣31)=10. 故答案为:﹣10.
∵a1=2,∴a2=﹣1,同理可得a3=5,a4=﹣7,a5=17,a6=﹣31.
【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.
16.【答案】 平行 .
【解析】解:∵AB1∥C1D,AD1∥BC1,
AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=A C1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1 由面面平行的判定理我们易得平面AB1D1∥平面BC1D 故答案为:平行.
【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.
17.【答案】 6 .
【解析】解:∵|z|=1,
|z﹣3+4i|=|z﹣(3﹣4i)|≤|z|+|3﹣4i|=1+∴|z﹣3+4i|的最大值为6,
第 11 页,共 17 页
=1+5=6,
故答案为:6.
【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.
n118.【答案】231 【解析】
考
点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.
【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如anqan1p(p0,q1)的递推数列求通项往往用构造法,利用待定系数法构造成anmq(an1m)的形式,再根据等比数例求出anm的通项,进而得出an的通项公式.
三、解答题
19.【答案】
【解析】解:(1)根据题意,得; 该旋转体的下半部分是一个圆锥,
上半部分是一个圆台中间挖空一个圆锥而剩下的几何体, 其表面积为S=×4π×2或S=×4π×2
×2=8
π, ﹣2π×
)+×2π×
=8
π;
+×(4π×2
(2)作ME⊥AC,EF⊥BC,连结FM,易证FM⊥BC, ∴∠MFE为二面角M﹣BC﹣D的平面角, 设∠CAM=θ,∴ EM=2sinθ,EF=∵tan∠MFE=1,∴∴CM=2
.
,
,∴tan
=
,∴
,
第 12 页,共 17 页
【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.
20.【答案】
【解析】解:(Ⅰ)∵对于任意的n∈N*,记集合En={1,2,3,…,n},Pn=∴集合P3,P5中的元素个数分别为9,23,
∵集合A满足下列条件:①A⊆Pn;②∀x1,x2∈A,且x1≠x2,不存在k∈N*,使x1+x2=k2,则称A具有性质Ω,
∴P3不具有性质Ω.…..
证明:(Ⅱ)假设存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.其中E15={1,2,3,…,15}. 因为1∈E15,所以1∈A∪B,
不妨设1∈A.因为1+3=22,所以3∉A,3∈B.
同理6∈A,10∈B,15∈A.因为1+15=42,这与A具有性质Ω矛盾. 所以假设不成立,即不存在A,B具有性质Ω,且A∩B=∅,使E15=A∪B.…..
解:(Ⅲ)因为当n≥15时,E15⊆Pn,由(Ⅱ)知,不存在A,B具有性质Ω,且A∩B=∅,使Pn=A∪B. 若n=14,当b=1时,
,
.
取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14}, 则A1,B1具有性质Ω,且A1∩B1=∅,使E14=A1∪B1. 当b=4时,集合
中除整数外,其余的数组成集合为,
第 13 页,共 17 页
令,,
.
则A2,B2具有性质Ω,且A2∩B2=∅,使当b=9时,集
中除整数外,其余的数组成集合
,
令
则A3,B3具有性质Ω,且A3∩B3=∅,使
.
集合
它与P14中的任何其他数之和都不是整数,
因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A∩B=∅,且P14=A∪B. 综上,所求n的最大值为14.…..
中的数均为无理数,
,
.
【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用.
21.【答案】
【解析】解:(Ⅰ)由2bsinA=又∵B为锐角, ∴B=
,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
a,以及正弦定理
,得sinB=
,
222
(Ⅱ)由余弦定理b=a+c﹣2accosB, 22
∴a+c﹣ac=36,
∵a+c=8, ∴ac=∴S△ABC=
22.【答案】
【解析】解:(1)若 x>0,则﹣x<0…(1分) ∵当x<0时,f(x)=().
x
,
=
.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
∴f(﹣x)=()﹣.
x
第 14 页,共 17 页
∵f(x)是定义在R上的奇函数, f(﹣x)=﹣f(x),
xx
∴f(x)=﹣()﹣=﹣2.…(4分)
(2)∵(x)是定义在R上的奇函数, ∴当x=0时,f(x)=0,
∴f(x)=.…(7分)
函数图象如下图所示:
(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分) 无增区间…(12分)
【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.
23.【答案】
【解析】解:(1)证明:∵Sn=nan﹣n(n﹣1) ∴Sn+1=(n+1)an+1﹣(n+1)n… ∴an+1=Sn+1﹣Sn=(n+1)an+1﹣nan﹣2n… ∴nan+1﹣nan﹣2n=0 ∴an+1﹣an=2,
第 15 页,共 17 页
∴{an}是以首项为a1=1,公差为2的等差数列 … 由等差数列的通项公式可知:an=1+(n﹣1)×2=2n﹣1, 数列{an}通项公式an=2n﹣1;… (2)证明:由(1)可得
…
=(3)∴
=两式相减得=
, ,
…
…
,
,
=,
==∴∴
*
∵n∈N,
,
,
…
…
∴2>1,
n
∴∴
, …
24.【答案】
第 16 页,共 17 页
【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.
DEDCBC2,则BCABDE4,∴BC2. BCBAAB
1∴在RtABC中,BCAB,∴BAC30,∴BAD60,
21∴在RtABD中,ABD30,所以ADAB2.
2∴
第 17 页,共 17 页
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务