Excitonmigrationin-phasepoly„9,9-dioctylfluorene…
M.Ariu,*M.Sims,*M.D.Rahn,J.Hill,A.M.Fox,andD.G.Lidzey†
DepartmentofPhysicsandAstronomy,TheUniversityofSheffield,HicksBuilding,HounsfieldRoad,SheffieldS37RH,UnitedKingdom
M.Oda‡
UniversityofPotsdam,InstituteofPhysics,AmNeuenPalais10,14469Potsdam,Germany
J.Cabanillas-GonzalezandD.D.C.Bradley†
TheBlackettLaboratory,ImperialCollegeLondon,PrinceConsortRoad,
SW72BZLondon,UnitedKingdom
͑Received21November2002;revisedmanuscriptreceived12March2003;published30May2003͒Wehavestudiedthedynamicsofopticallygeneratedexcitationsinspin-coatedglassyfilmsofpoly͑9,9-dioctylfluorene͒͑PFO͒andin-phasePFOfilmsusingpicosecondtimeresolvedphotoluminescence͑PL͒spectroscopy,performedbothatroomtemperature͑RT͒andat5K.WealsopresentmeasurementsofthePLemissionofPFOand-phasePFOatRTand5Kfollowingcontinuouswave͑cw͒excitation.Weshowthatthecwemissionfrom-phasePFOat5Kisveryhighlyresolved,permittingustomakeanassignmentofthedifferentvibrationalmodesofthemoleculethatcoupletotheS1→S0transition.Viatime-dependentspectros-copymeasurementsperformedat5K,weareabletofollowexcitondiffusionandrelaxationthroughanenergeticallybroadeneddensityofstatestopolymerchainshavingalongerconjugationlengthandlowerenergygap.Bycomparingtherelativeemissionintensityofthedifferentvibronictransitionsasafunctionoftime,weareabletodirectlydemonstratethatthelowerenergyemissivestatesareassociatedwithlongerconjugationlengthpolymericchainsthathaveenhancedrigidity.Atroomtemperature,wefindthattheserelaxationprocessesoccurfasterthantheresolutionofourdetectorduetothermallyassistedenergymigration.DOI:10.1103/PhysRevB.67.195333I.INTRODUCTIONANDOVERVIEW
PACSnumber͑s͒:78.55.Kz,78.47.ϩp,78.66.Qn,78.30.Jw
Conjugatedpolymersareanimportantclassoforganicsemiconductorthatwillfindapplicationinarangeoflow-costconsumerelectronics.1Recently,oneparticularclassofconjugatedpolymers;thepolyfluorenes,havereceivedworld-wideattentionduetotheirverypromisingperfor-manceinstate-of-the-artorganiclightemittingdiodes͑LED’s͒,2,3photovoltaicdevices,4andthinfilmtransistors.5Poly͑9,9-dioctylfluorene͒͑PFO͒isaprototypicalfluorene-basedhomopolymerwhosechemicalstructureisshowninFig.1.PFOisattractiveasanemissivematerialinorganicdisplaysduetoitshighphotoluminescencequantumeffi-ciency͑whichcanexceed50%͒6andhighholemobility.7PFOisathermotropicliquidcrystal,8andwhenalignedonsuitablypreparedsurfacescanemitbothpolarizedphotolu-minescenceandelectroluminescence,9–11thusmakingitapromisingmaterialforapplicationinliquid-crystaldisplaybacklights.Alignedsamplesalsoallowsignificantenhance-mentsinmobility12anddemonstratelargeopticalbirefringence13thatcanbeusedtoproducehighlypolarizedemissionfrommicrocavitiesandreducedgainthresholdswithinwaveguides.14Furthermore,poly͑9,9-dioctylfluorene͒isafascinatingsystemforthestudyoffundamentalphoto-physicalprocesses,asitcanbepreparedinanumberofdifferentmorphologicalphases.15Bymodifyingthephysicalmorphologyofthepolymerfilmwhilekeepingitschemicalcompositionconstant,wehavepreviouslyshown6thatchangesintheelectronicpropertiesofthedifferentphasescanbedirectlyrelatedtothenanostructureofthematerial.Thereaderisdirectedtoanumberofrecentreviews10,16,17of
0163-1829/2003/67͑19͒/195333͑11͒/$20.00
thestructuralandopticalpropertiesofpolyfluorenesforfurtherdetails.
Conjugatedpolymerthinfilmsareoftenstructurallydis-ordered,leadingtoalimitationoftheeffectiveconjugationlength.Forthisreason,conjugatedpolymerchainscanbethoughtofasbeingcomposedofanumberofdifferentseg-ments,eachhavingadifferentconjugationlengthandthusadifferentenergygap.Thedegreeofenergeticinhomogeneityinaconjugated-polymerthinfilmisafunctionofthelocalstateoforderandthustheStokesshiftresultingfromexcitonmigrationcanbeviewedasanextrinsiceffect.Suchadisor-dercanresultintheobservationofpronouncedenergymi-grationeffects,withexcitonsbeingabletomovebothalongandbetweenpolymerchains.Energytransferusuallyoccurstopolymerchainshavingalongerconjugationlengthandthuslowerenergygap.Thisprocesscanleadtothediffusion
FIG.1.ThechemicalstructureofPFOandasegmentofaPFOchaininthe-phaseconformation.In-phasePFO,therotationalanglebetweenmonomerunitsisfixedat180°.
©2003TheAmericanPhysicalSociety
67195333-1
M.ARIUetal.PHYSICALREVIEWB67,195333͑2003͒
ofexcitonsinconjugatedpolymerfilmsoverdistancesthathavebeenestimatedtobebetween6and12nminthepoly-merPPV,18,1914nminLPPP,20and5nminPFO.21Themicroscopicprocessessurroundingexcitonmigrationarenotwellunderstood.Oneimportantmechanismforexcitonmi-¨rstertransfer͑dipole-dipolecoupling͒.22,23ThisgrationisFo
processcaneffectivelyaccountforthetransferofexcitonsbetweendifferentisolatedchromophoresbothinsolutionandinpolymerthinfilms.23,24Recentworkonpolymer/mesoporous-silicacompositeshasshownthattherateofex-citontransferbetweenpolymerchainsisovertwoordersofmagnitudefasterthanthemigrationofexcitonsalongapoly-merchain.25Asthetransitiondipolemomentofanexcitonisorientedparalleltothechainaxis,itwasarguedthatdipole-dipolecouplingbetweendifferentpolymerchainscanbeafastandefficientprocess,whilethesameprocesscannotrap-idlymoveanexcitonalongapolymerchain.Migrationofexcitonscanalsooccurviaothermechanismssuchastun-nelingandthermallyassistedhopping.26,27Excitontransferbytunnelingisanticipatedtoaccountforbothtransferbe-tweenpolymerchainsandbetweendifferentconjugatedseg-mentsonthesamechain.Disentanglingthesedifferentpro-cessesinadisorderedpolymerfilmisnotatrivialtask.Thisisbecausethetransferratesassociatedwitheachoftheseprocesseswillbehighlydependentonthelocalmicroscopicgeometryandthemolecularconformation.Suchconforma-tionsmayalsoundergothermallyinducedfluctuations,andthusenergy-transferchannelsbetweenoralongmoleculesmayopenandcloseinadynamicfashion.Thus,inallbutthemostsimplesystems,itbecomesasignificantchallengetofullydescribeexcitonmigrationatthemolecularscale.
Excitonmigrationinconjugatedpolymershasbeenstud-iedviasiteselectivefluorescencemeasurements.28–31Intheseexperiments,theexcitationenergyEistunedacrosstheabsorptionpeakanddownthroughthetailofthedensityofstates͑DOS͒,towardslowerenergy.Thecorrespondingpho-toluminescence͑PL͒spectraevolvefrominitiallybeingin-dependentofEtothenshiftingresonantlywithE.Thecriti-calenergyintheDOStailatwhichthischangeinbehavioroccursiscalledthelocalizationenergyEloc.ForEϽEloc,theemissiontendstooccurpredominantlyfromtheemissivecentresonwhichtheexcitonsarefirstcreatedi.e.,energytransferisblocked.Thisarisesbecausethereare,onanav-erage,nositesinthevicinitythathavelowerenergystates.Femtosecondandpicosecondtimeresolvedphotolumines-cencemeasurementshavealsobeenusedtostudyexcitonmigrationinconjugatedpolymers.PolymersthathavebeeninvestigatedincludePPV,33,32PPPV,34MEH-PPV,35,36CN-PPV,37LPPP,30,38andPFO.31Kerstingetal.32comparedthePLemissiondynamicsofPPVwiththoseofadistyryl-stilbenePPVoligomercomposedoftwophenylandtwophenyleneringsseparatedbythreevinylenemoities͑OPV3͒.Adynamicredshiftwasobservedforthepolymeremissionbutnotfortheoligomer,suggestingthattheshiftwasasso-ciatedwitharandomwalkoftheexcitonstowardslowerenergysiteswithintheDOS.Itwasalsoshownthatatroomtemperature͑RT͒,thetimerequiredforasingleexcitonhopbetweensiteswasр250fs.Understandingexcitonmigrationisimportantinthede-velopmentofefficientoptoelectronicdevicesbasedoncon-jugatedpolymers.Forexample,photovoltaicdevicesrelyonphotocurrentgenerationviaexcitondissociationintopairsofoppositelychargedpolarons.DissociationcanbepromotedataninterfacebetweentwodifferentmaterialsforwhichthepotentialoffsetsinHOMO͑highestoccupiedmolecularor-bital͒andLUMO͑lowestunoccupiedmolecularorbital͒lev-elsaresufficienttoovercometheexcitonbindingenergy.However,inmanypracticalcases,mostofthephotogener-atedexcitonsarecreatedatsomedistancefromtheinterfaceandhaveafinitelifetimetoreachthatinterfacebeforetheydecayradiatively.Itisthenimportantthatexcitonmigrationbeveryeffective.4InpolymerLEDshowever,excitonmi-grationisoftenresponsibleforreducingthequantumeffi-ciencyofthedevice.Itincreasestheprobabilityofexcitoncaptureatnonradiativetrapsandincreasestheeffectivewidthofthedeadzoneclosetothemetalcathodeswithinwhichtheexcitonscanbequenchedviadipole/image-dipoleinteractions.21,39Theexcitonmigrationprocesshasather-mallyassistedcomponent,26,27andthusexcitonquenchingisoftenreducedattemperaturesbelow200K.6,38
Thereareagrowingnumberofreportsthatdiscussul-trafastspectroscopymeasurementsonpolyfluorenes.31,40–43Herzetal.40investigatedtheroomtemperatureemissionfromorientedfilmsofPFO,annealedonarubbedpolyimidelayerbyPLup-conversionspectroscopy.Itwasshownthatatroomtemperature,excitonmigrationisresponsibleforthedynamicredshiftofthepolymeremissioninthefirst600psafterexcitationandforthefast͑3ps͒decayatthehigh-energysideofthePLemission.Itwasalsodemonstratedthatexcitonmigrationaccountsfortheincreaseinpolarizationratiothatoccurswithtimewhentheexcitationlaserispolar-izedperpendiculartotheaverageorientationofthePFOchains.Meskersetal.31studiedtheexcitationrelaxationatlowtemperatureinfilmsofpoly͑ethyl-hexylfluorene͒usingastreakcamerawithpicosecondresolution.At15K,theyob-servedadynamicredshiftofϳ45meVinthefirst400psfollowinglaserexcitationat3.08eV.Astheexcitationen-ergywasloweredbelowthelocalizationenergy(Elocϭ2.93eV),notime-dependentredshiftoftheemissionwasobserved.UsingaMonteCarlosimulationtheyshowedthat
¨rster-theredshiftofthePLcouldbedescribedassumingaFo
typeenergytransferwithacharacteristicradiusof3nm.
Inthispaper,wecomparetheemissiondynamicsofexci-tonsinPFOfilmsatbothRTand5K,preparedwithtwodifferentmorphologies,namely,spin-coated͑SC͒glassyfilmsandfilmscontainingafractionof-phasechains.44,45PFOintheso-called-phasemorphologyisparticularlyin-terestingforspectroscopicstudy.6,42,44,45IthasbeenshownthatwhenPFOisdrawnfromameltintotheformofafibreandthenconvertedintothephase,thepolymerchainsarehighlyorderedandhaveaconjugationlengthofapproxi-mately30monomerunits.15Whether-phasechainsinthethinfilmsstudiedherearecharacterizedbysuchahighde-greeoforderisnotknown.However,itisclearfromthePLandabsorptionredshiftsobservedinboththeRTandthe5KspectrathatthereisasignificantincreaseinconjugationlengthinthephasecontainingfilmscomparedtoSC
195333-2
EXCITONMIGRATIONIN-PHASEPOLY...PHYSICALREVIEWB67,195333͑2003͒
glassyfilms.Weshowthatthishighdegreeoforderresultsinverywell-resolvedPLemissionspectraat5K.Eachofthevibronicreplicasobservedinthe5KPLspectrumisrela-tivelynarrow(ϳ30meV)comparedtotheirenergeticspac-ing͑between40and110meV͒.Theresultingabsenceofsignificantoverlapbetweenthedifferentpeaksallowsmea-surementofthedecaysignaturesofexcitonmigrationacrossvirtuallytheentirePLspectrum.Thisisindistinctcontrastwithmostotherconjugatedpolymersystemsthathavebeenstudied.30,32–34,38Inthesematerials,stronginhomogeneousbroadening͑evenatlowtemperature͒masksalargepartofthediffusionprocess.Changesinthedecaydynamicsarethenonlyclearlyidentifiedatthehigh-energyendofthePLspectrum.Becauseoftheverywell-resolvedPLemissionspectrumof-phasePFO,weareabletoclearlyobserveeffectsthatareusuallymaskedbystronginhomogeneousbroadening.
Thepaperissplitintofivesections.AftertheIntroductionandtheExperimentalMethods,wedescribethecwPLemis-sionspectraofSCand-phasePFOinSec.IIIAandmakeinitialassignmentsofthevibrationalmodesofthepolymerthatcoupletotheelectronictransition.WethenpresentinSec.IIIBourresultsonthepicosecondPLemissiondynam-icsoftheSCand-phasePFOfilmsatbothroomtempera-tureand5K.WepresentcompellingevidenceforexcitonmigrationfromdynamicredshiftsoftheemissionandshowthattheenergeticDOSofanensembleof-phasechainsdispersedwithinaglassyPFOmatrixisaroundafactorof2narrowerthanthatfordisorderedspin-coatedfilms.TheDOSwidthsdeducedfromtheseexperimentsareconsistentwithspectrallinewidthsandwithestimatesfortransport-stateDOSwidthsestimatedfromtemperature-dependenttime-of-flightexperiments.EnergytransferoccursfromtheglassyPFOmatrixtothe-phasechainsinatimeshorterthanthetemporalresolutionofourdetector͑5ps͒.Theun-usuallywell-resolvedvibronicfeaturesobtainedfor-phasePFOsamplesatlowtemperatureallowtheexcitonmigrationtoalsoberevealedbyafastdecayofthePLatthehigh-energysideofeachofthevibronictransitionsandariseofintensitydetectedclosetoeachoftheirpeaks.Thefastcom-ponentarisesfromarapiddepletionofthehigherenergysites,whiletherisingcomponentindicatesthecorrespondingoccupationoflowerlyingsites.InSec.IV,weshowthatexcitonmigrationtoextendedpolymerchainswithalowerenergygapandhigherrigidityisfurtherrevealedbyatime-dependentdecreaseintheHuang-Rhysparameter.Finally,inSec.V,wepresentourconclusions.
II.EXPERIMENTALSECTION
A.Samplepreparation
swellingstresstobeappliedtothefilm,whichinducesanelongationinafractionofthepolymerchains,causingthemtoadopta21helixconformation.15Inthisconformation,theanglebetweentheplanesoftwoadjacentfluoreneunitsis180°͑seeFig.1͒,renderingthemhighlyplanar͑andeffec-tivelyribbonlike͒.WeestimatefromtheabsorptionspectrapresentedbelowthatϷ13%ofthePFOchainsadopta-phaseconformation.Becauseofthehighconjugationlengthofthe-phasechains,theyhaveasignificantlylowerenergygapthanthesurroundingamorphousPFOmatrix.Ithasbeenshown6,42,44,45thatfollowingexcitongenerationintheglassyPFOmatrix,efficientenergytransferoccurstothe-phasechains.Suchmaterialscanbeeffectivelyviewedasself-dopedpolymericsystems.
B.Methods
GlassySCfilmswerepreparedbydissolvingPFOat20mg/mlinchloroformandthenspincoatingontoaquartzsubstratetocreateafilmof350nmthickness.WehavefoundthatchloroformisagoodsolventforPFOandthatthereisvirtuallyno-phasechainformationinfreshspin-coatedglassyfilmspreparedfromit.The-phasechaincon-formationwasinducedinSCfilmsbyexposingthemtotolu-enevaporforaperiodof12h.Thisexposurecausesa
AllmeasurementswereperformedonPFOthinfilmsplacedinacontinuousflowheliumcryostat͑heldateitherroomtemperatureor5K͒.Continuouswave͑cw͒measure-mentsofthePLemissionweremadefollowingexcitationfromthe3-nmlineofaHeCdlaserandthendetectedusingacalibratedphotomultipliercoupledtoascanningmonochromator.AbsorptionmeasurementsweremadebyshiningthelightfromaxenonlampthroughthePFOfilmdepositedonaquartzsubstrate͑mountedonthecoldfingerinthecryostat͒.Thespectrumofthetransmittedlightwasmeasuredusingascanningmonochromatorandphotomulti-pliertubedetector.Thefilmwasthenreplacedbyablankquartzsubstrate,andtheopticaltransmissionwasthenre-measured.Bycomparingthetwospectra,therelativeabsorp-tionofthePFOwasdetermined.
Timeresolvedmeasurementsweremadebyexcitingthefilmsusing150-fspulsesfromthesecondharmonicofamode-lockedTi:sapphirelaseratawavelengthclosetothepeakofthePFOabsorption͑at365nm͒,ordirectlyintothe-phaseabsorptionmaxima͑at432nm͒.PLwascollectedwithalens,andimagedintoasubtractivedoublemonochro-mator.ThedynamicsofthePLdecay͑measuredataseriesofdiscretewavelengths͒werethendeterminedusingasyn-chroscanstreakcamera.Theexperimentalsetuphadatimeresolutionof5psandaspectrallydeoptimizedresolutionof3nmtoincreasethesignal.MeasurementsofthePLdecayweremadeevery3nmfrom430nmto0nm,whichcov-eredmostofthePFOemissionspectrum.ThePLspectraatdifferenttimes͑between5and900ps͒aftertheinitialexci-tationpulsewerethenreconstructedpointbypoint,bymea-suringtheemissionintensityforeachindividualwavelength.Thespectrometerandstreakcamerawerearrangedtohaveorthogonalslits,ensuringthatPLwasonlycollectedfromthecenteroftheexcitationregion.ControlmeasurementsdemonstratedthatthePLdecaykineticswereinsensitivetotheexcitationpower.
III.RESULTSA.cwspectra
Figure2͑a͒showstheabsorptionandcwPLemissionofaSCPFOfilmmeasuredatRT.Figure2͑b͒showsthesame
195333-3
M.ARIUetal.PHYSICALREVIEWB67,195333͑2003͒
FIG.2.ThecwabsorptionandPLofaspin-coated͑SC͒PFOfilmshownat͑a͒roomtemperature͑upperpanel͒and͑b͒at5K͑lowerpanel͒.ThePLwasexcitedat3nmusingaHeCdlaser.
FIG.3.TheabsorptionandPLofaPFOfilmcontaining-phasechainsat͑a͒roomtemperature͑upperpanel͒and͑b͒at5K͑lowerpanel͒.ThePLwasexcitedat3nmusingaHeCdlaser.
spectrameasuredat5K.ItcanbeseenthattheabsorptionspectrumischaracterizedbyaratherbroadbandthatdoesnotchangeverysignificantlyinwidthbetweenRTand5K.Theabsorptionbandoriginatesfromaseriesofinhomoge-neouslybroadenedvibronictransitionsfromthegroundS0tothefirstexcitedelectronicstateS1.TheRTPLspectrumischaracterizedbyaseriesoffeatureslocatedat423,447,476,and502nm.At5K,thewavelengthofeachofthetransi-tionsisredshiftedbybetween5and13nm͑beinglocatedat428,456,486,and515nm͒.Thepeakssharpenasthetem-peratureisreduced.Forexample,thewidthofthe423nmpeakis90meVatRTand60meVat5K.Thereisalsosomeredistributionofoscillatorstrength,withtherelativeinten-sityofthe428nmtransitionbeingalmosttwiceaslargeasthe455nmpeakat5K.
Figures3͑a͒and3͑b͒showtheabsorptionandthecwPLemissionofa-phasePFOfilmmeasuredatRTand5K,respectively.TheabsorptionspectrumischaracterizedatRTbyamainbandat390nmandanadditionalpeakat435nm.ThebroadbandoriginatesfrominhomogeneouslybroadenedS0→S1transitionsintheglassyPFOmatrix.Theabsorptionpeakat435nmhasbeenassigned44,45totheS0→S10-0transitionofthe-phasechains.Itappearsatalowerenergycomparedtothatoftheglassymatrix,asthe-phasechainsaremorehighlyconjugatedandthushavealowerenergygap.TheyarealsocharacterizedbyahigherstateoforderthantheglassyPFO,andthusthe0-0transitionisobservableinabsorptionasarelativelynarrowpeakhavingalinewidthof67meVat5K.Welargelydiscountthepossibilityofthisfeatureresultingfrominteractionsbetweenneighboringpolymerchains.Wecanreadilydetect-phaseemissionfromPFOthathasbeendilutedintoaninertpolystyrenematrixatlowconcentration͑equivalentto1partin104)andthenexposedtoatoluenevapor.Atsuchlowconcentrations,asignificantassociationbetweenindividualPFOmoleculesisratherunlikely,suggestingthatthe-phaseemissionorigi-natesfromanintrachainstateratherthananinterchainstate.
ThepeaksintheRT-phasePLspectraarelocatedat440,468,500,and533nm.The440nmPLpeakhasbeenassigned44,45totheS1→S00-0transition.The-phase0-0PLemissionpeakisthusredshiftedby16nmcomparedtothe0-0peakdetectedfromtheSCPFO,consistentwithasmallerenergy-gapforthe-phasechains.Asthetempera-tureisloweredto5K,thepeaksat468and500nmeachsplitinto͑atleast͒threepeaks.Inthe5K-phasePLspec-trum,wethusidentify7peaksat444,459,471,478,501,509,and517nm.AswasobservedintheSCPFOfilm,weseeasignificantnarrowingofeachofthepeaksinthePLspectrumasthetemperatureislowered.Forexample,the0-0peakhasalinewidthof9nm͑56meV͒atRTand4nm͑25meV͒at5K.
InFig.4weshowasemilogarithmicplotofthe5K-phaseandSCPLspectra,plottedagainstphotonenergy.
FIG.4.Acomparisonbetweenthe5KPLspectrumofaspin-coated͑SC͒PFOfilmandthatofa-phasecontainingfilm.Bothspectrawereexcitedat3nmusingaHeCdlaserandareplottedonalogarithmicordinatescaletomoreclearlyshowthevibronicfeatures.Thethickarrowidentifiesafeatureinthe-phaseemis-sionspectrumthatisassumedtocomefromtheemissionofexci-tonsthatremaininthesurroundingglassyPFOmatrix.Weidentifytheenergyseparationsbetweenthedifferentvibronicpeaksinthe-phasespectrumandthe0-0peakasdiscussedinthetext.
195333-4
EXCITONMIGRATIONIN-PHASEPOLY...PHYSICALREVIEWB67,195333͑2003͒
Asthe-phasePLspectrumisratherwell-resolved,weareabletomakeatentativeidentificationoftheoriginofthesefeatures:Thepeaksat2.697eV͑459nm͒,2.628eV͑471nm͒,and2.5eV͑478nm͒correspondtoenergiesof712,1255,and1580cmϪ1belowthatofthe0-0transitionpeakat2.788eV͑444nm͒.WemarktheenergyseparationsbetweenthepeaksinFig.4.InourpreviouslyreportedRamanstudies46of-phasePFO,weidentifiedstrongRamanmodesat735,1281,and1604cmϪ1.Thepeaksat2.471͑501nm͒eVand2.3eV͑517nm͒correspondtoenergiesoftwice1255and1580cmϪ1fromthe0-0peak,respectively.Thepeakat2.432eV͑509nm͒isseparatedfromthe0-0peakbyanenergyequivalentto2876cmϪ1.Itispossiblethatthisfeatureoriginatesfromasummodeinvolvingboth1255and1580cmϪ1vibrationalquanta͑where1255ϩ1580ϭ2835cmϪ1).
TounderstandtheoriginoftheseRamanmodes,abinitiomolecularorbitalcalculationswerecarriedoutusingtheGaussian98WsoftwarepackageonaPCwithaPentium4processor.47,48ThevibrationalspectrumofafluorenetrimerwasmodeledusingtheRestrictedHartree-Fockmethodanda‘‘splitvalence’’basisset͑6-31G͒.Forthisparticularmethodandbasissetchoice,thecalculatedfrequencieshavetobescaledbyafactor0.inordertomatchtheexperi-mentalvalues.48OuranalysisindicatesthateachoftheseRamanmodescorrespondstoadifferentbackbonestretchingmodeofthefluorenemonomerandthusitisanticipatedthatsuchvibrationalmodescancoupletotheelectronictransi-tionsofthepolymer.OurmodelpredictsthattheRamanmodeat735cmϪ1correspondstoanin-planedeformationofthefluoreneunit,themodeat1281cmϪ1correspondstoaC-Cinterunitstretch,andthe1604cmϪ1modeisassociatedwithaphenyl-ringquadrantstretch.
ItcanbeseenthattheenergeticcoincidencebetweentheRamanmodesandPLpeaksthatwedetectisveryreason-able.Itisclear,however,thatsuchRamanmeasurementscontaincontributionsfromchainsofdifferentconjugationlength,whilethevibrationalspectrumthatweinferfromthePLspectrumoriginatesfromlongerconjugation-lengthchainsduetotheeffectofexcitonmigration.Polymerchainsthathavelongerconjugationlengthsareoftenassociatedwithlower-frequencyRamanmodes.However,wecanlargelydiscounttheeffectofconjugationlengthascausingthesmalldifferencebetweentheenergeticlocationsoftheRamanmodesandthevibronicfeaturesseeninthe5KPLspectra.InPFO,wefindthatchangesintheRamanfrequen-ciesthatoccurasafunctionofconjugationlengthareveryweak.Forexample,wehavecomparedthestrongphenyl-ringquadrant-stretchmode͑locatedaround1600cmϪ1)measuredfromathinfilmofafluoreneoligomer͑adimer͒withthatofaspin-coatedfilmofPFOpolymer,andfindthatthefrequencyofthismodeisonlyaround3cmϪ1higherinthedimercomparedtothepolymer.WehavealsocomparedthefrequencyofthisRamanmodeinaspin-coatedfilmofPFOwithbotha-phasePFOfilmandaPFOfilmwhichhasbeendrivenintoacrystallinephasebyheatingto220°Cfollowedbyaslowcooltoroomtemperature͑seeRef.6fordetails͒.WefindthatthecharacteristicRamanmodesshifttohigherfrequenciesinthe-phaseandcrystallinePFOfilmsbyaround1to2cmϪ1.Asboththe-phaseandcrystallineformsofPFOareassumedtohavealongeraverageconju-gationlengththanpolymermoleculesinaspin-coatedglassy-film,itappearsthatitistheconformationandthelocalenvironmentinwhichthemonomerfindsitselfthathasthemostprofoundeffectontheRamanmodesratherthantheconjugationlengthofthepolymer.ItisperhapsthisgeneralinsensitivityoftheRamanfrequenciesontheconjugationlengththatallowsustoachievesuchagoodcorrelationbe-tweentheresultsofourRamanandPLspectroscopymea-surements.Theremainingsmalldiscrepancybetweentheen-ergyofthefeaturesdetectedintheRamanandthePLspectroscopy͑ofaround25cmϪ1)canprobablybeac-countedforbytheexistenceofaphononwingassociatedwiththeelectronicorigin.30Theconsequenceofthepresenceofaphononwingisthatthetrueelectronicoriginfromwhichthevibronicpeaksshouldbemeasuredwouldinfactlieonthehigh-energysideofthe0-0vibronicpeakobservedhere.Inadditiontothiscorrection,thereareinfactanumberofothermolecularvibrationalmodesthatcanalsocoupletotheelectronictransitions.Thus,thesmallshiftsbetweenthefeaturesthatweidentifyinRamanandinPLmightbealsoexpectedasaconsequenceofpartialmixingwithothervi-brationalmodesofthemolecule.
ItcanbeseenthatintheSCand-phasePFOspectra,alltheabsorptionandemissionpeaksredshiftbybetween5and13nmasthetemperatureisreducedfromRTto5K.Thismightbeexplainedasaconsequenceofanincreaseinthedensity͑andthusdielectricconstant͒ofthepolymer,anef-fectthathasbeendemonstratedbyhigh-pressurestudiesofPPV.49However,suchredshiftscanalsooriginatefromin-creasesintheconjugationlengthofthepolymerchains.Theincreaseintheintensityofthe0-0peakinbothPLandabsorptionatlow-temperatureseemstosuggestthatthepolymerchainsaremoreplanar,indicatingthatthecontribu-tionfromincreasedconjugationplaysamoresignificantrole.SimilarbehaviorhasbeenobservedinPPVpolymers28andhasbeenassociatedwiththefreezingoutofthelibrationalandrotationalmodesatlowtemperature.Wefindthatthelinewidthofthe-phase0-0PLpeakreducesasthetem-peratureislowered,being9nm͑56meV͒atRTand4nm͑25meV͒at5K.ThefreezingoflibrationalmodesisindirectaccordwiththelinewidthreductionofthePLspectrumthatweobserve,andwethusconcludethattheplanarityandconjugationlengthof-phasechainsincreasesasthetem-peratureisreduced.Interestingly,wefindthatat5K,thelinewidthofthe0-0PLpeakisoverafactorof2narrowerthanthe0-0absorptionpeak͑25meVcomparedwith67meV͒.Sucheffectsareoftenobservedindisorderedorganicsemiconductorsandoccurasaresultofexcitonmigrationtothemostorderedand,thus,thelowestenergy-gapregionsofthefilm.Itisclearthereforethatthereisstilladegreeofdisorderwithinthehighlyordered-phasechains.Atpresent,theoriginofsuchadisorderisnotclear.Inthehighlyextended-phaseensemble,therewillstillbesomedistributionofconjugationlengths.However,theelectronicpropertiesofasinglechainwillsaturate,oncetheconjuga-tionlengthexceedssomecriticallength.Therefore,adistri-butionof͑verylong͒conjugation-lengthpolymer-chainsmay
195333-5
M.ARIUetal.PHYSICALREVIEWB67,195333͑2003͒
notbereflectedinasimilardistributionofpolymer-chainenergygaps.Rather,thebroadeningofthe0-0PLpeakmaywelloriginatefromthefactthatthe-phasechainsarepresentwithinaheterogeneous,glassyPFOmatrix.Itmaywellbethislattersourceofdisorder͑ratherthanaconjugation-lengthdistribution͒whichultimatelydetermineswhich-phasepolymerchainshavethelowestenergygap.Asweshowbelow,wecanfollowthedynamicsoftheexci-tonmigrationprocessbothinglassySCPFOandinthe-phasechaincontainingsamples.
Wecanestimatethefractionof-phasechainspresentinthesolvent-treatedfilmbyfirstsubtractingtheabsorptionspectrummeasuredonthefreshlyspin-coatedfilmfromthatmeasuredaftersolventexposure.Thisrevealsthe-phaseabsorptionspectrum.44,45Boththe-phaseabsorptionspec-trumandtheabsorptionspectrumoftheremainingglassymatrixarethenintegratedtofindtheirrelativeareas.Com-paringtheintegrals͑assumingthatboththeSCglassyPFOand-phasePFOhavesimilaroscillatorstrengths͒allowsustocalculatethefractionof-phasechainsinthematrix.Inthefilmstudiedinthiswork,thefractionofchainsthatas-sumethe-phasemorphologywasϷ13%.Suchananalysishaspreviouslybeenreportedindetailfor-phasePFOfilmsatRT.45
FromthespectrapresentedinFigs.2͑a͒and3͑a͒,wees-timatethatattheexcitationwavelength(ϭ365nm),theopticalabsorptionoftheglassyPFOmatrixis13timesgreaterthanthatofthe-phasecomponent.Thus,morethan90%oftheexcitonsareexpectedtobephotogeneratedintheglassyPFOmatrix.Followingphotoexcitation,almostcom-pleteenergytransferoccursfromthismatrixtothe-phasechains.FromFig.4itisapparentinthe-phaseemissionthatthereisaveryweakemissionpeakat2.92eV͑markedwithanarrow͒,whichwebelieveoriginatesfromthe0-0emissionpeakofexcitonsthatremaininthesurroundingmatrixthroughouttheirlifetime.TheintensityofthisfeatureisϷ700timesweakerthantheintensityofthe0-0bandofthe-phasePL.Italsoappearstobeslightlyshiftedtohigherenergy͑40meV͒comparedtothe0-0PLemissionpeakoftheSCfilm.Webelievethatthisapparentenergyshiftoriginatesfromself-absorptioneffectsbythe-phasechains.Theabsorptionmaximumofthe-phasechainsco-incideswiththelow-energytailoftheSC0-0emissionpeak.Theeffectofthisself-absorptionistoshifttheapparentmaximumoftheemissiontoslightlyhigherenergy.Self-absorptiononlymakesasmallcontributiontoitsrelativeweakness,astheSC0-0PLpeakapproximatelycoincideswiththeminimuminthe-phaseabsorptionspectrumob-servedat425nm.Fromtheanalysisofthe-phaseabsorp-tionspectra,weinfactfindthattherelativelinearabsorptionofthefilmat2.9eV͑correspondingtothepeakoftheglassyPFOemission͒isonlyϷ20%greaterthanthatat2.8eV͑correspondingtothepeakofthe-phaseemission͒.Thus,aftercorrectingforthefactthatthe5Kfluorescencequan-tumyieldofSCPFOisafactorof2largerthanthatof-phasePFO,6weestimatethatϾ99%oftheexcitonsgen-eratedintheSCPFOmatrixtransferto-phasechains.
FIG.5.The5KPLspectraof͑a͒aSCPFOfilmand͑b͒a-phasefilmexcitedat365nmusingafrequency-doubled,mode-lockedTi:sapphirelaserandmeasuredat5ps,100ps,and900psfollowingexcitation.ThecwPLspectrumexcitedat3nmusingaHeCdlaserisalsoshownforreference͑asathickline͒,alongsidethe900psspectrum͑shownasopencircles͒.
B.TimeresolvedPL
WefirstpresentmeasurementsofthePLdecayfrom-phaseandSCPFOfilmsat5Kfollowingultrafastexci-tationat365nm.Figures5͑a͒and5͑b͒showthePLemissionspectra,fromtheSCand-phasefilmsrespectively,atthreedifferenttimesfollowing365nmexcitation.Foracompari-son,wealsoplotthecwPLemissionspectraforboththeSCandthe-phasefilmsmeasuredat5K͑fullline͒ontopofthespectrameasuredat900ps͑opencircles͒.Thecwspectraare,inboththecases,normalizedtothe900psdataatthepeakofthe0-0emissiontransition.Itcanbeseenthatinbothmorphologies,thecwspectraarealmostidenticaltothosemeasuredat900ps,and͑apartfromasmallredshiftandrelativechangeinintensityofthepeaks͒areverysimilartothosemeasuredat5ps.Themoststrikingobservationisthatatalltimesbetween5and900ps,theemissionspectrafromthe-phasefilmissignificantlydifferentfromthatob-servedfromtheSCfilm.Inaddition,wedonotdetect͑withinthestreakcameranoiselimit͒anyglassy͑SC͒PFOemissionfromthe-phasefilm͑expectedaround420to430nm͒evenat5ps.Thesekeyresultsindicatethatontimescalesfasterthantheresolutionofourstreakcamera,alltheexcitonsphotogeneratedintheglassymatrixofPFOfilmsurroundingthe-phasechainshavetransferredtothe-phasechains.
Fasttransferprocesseshavebeenobservedviapump-probemeasurementsofexcitontransferfromPFOtothemo-leculardyetetraphenylporphyrin͑TPP͒indopedpolymerfilms.50Itwasfoundthatthetransfertimewashighlydepen-
195333-6
EXCITONMIGRATIONIN-PHASEPOLY...PHYSICALREVIEWB67,195333͑2003͒
dentontherelativeconcentrationofTPPacceptormoleculesintheblendanditwasarguedthatenergytransferoccurred
¨rstertransfer.24Itwasshownthatat1.5%TPP͑byviaFo
mass͒,transferoccurredinatimeof3psthatdecreasedto1.5psataTPPconcentrationof8%.WhethertransferfromtheglassyPFOmatrixtothe-phasechainsoccursvia¨rstertransferisnotknown.ThefasttransfertimesthatweFo
¨rstertransfer.WeseearecertainlynotinconsistentwithFo
estimatethat13%ofthePFOchainsadopta-phasemor-phology,andthus͑onthebasisofthefasttransferfromPFOtoTPP͒itisnotunreasonablethatexcitontransfercould
¨rstertransfertothe-phasechainsintimeslessoccurviaFo
than5ps.Indeed,thealmostcompletetransferofexcitonstothe-phasechains͑evidencedfromthecwPLspectra͒indi-catesthatthetransferprocessislikelytobeveryfastcom-paredtonormalspontaneousemission.However,itisdiffi-culttoruleoutotherexciton-transferprocess,e.g.,excitontunnelingbetweenneighboringchains,whichalsomightbeveryfast.
Itisinstructivetodiscussourresultsinthecontextofotherpolymericsystems.Inparticular,energytransferhasbeenstudiedfromPFOtothepolymerpoly͑9,9-dioctylfluorene-co-benzothiadiazole͒͑BT͒.26Hereitwas
¨rstertransferoccurredfromnearest-proposedthatFo
neighborsitesbetweenPFOandBTpolymerchains.Suchanexcitontransferoccurredoveratimescaleofaround12ps.
¨rstertransferisafunctionofthede-TheeffectivenessofFo
greeofspectraloverlapbetweentheabsorptionoftheguestmaterialandthefluorescenceemissionofthehostmatrix.22,23Wefindthatthedegreeofspectraloverlapbe-tweenaBTguestandaSCPFOhost,andbetweena-phasePFOguestandaSCPFOhostareequal,towithin10%.Onthisbasis,wearenotabletoquantitativelyexplainwhytransfertothe-phasechainsproceedssignificantlyfasterthanitdoestoBTguestmolecules.Itisprobablethatthedifferenceintransferratesisrelatedtothenanoscalestruc-tureofthefilms.OurrecentstructuralstudiesonblendfilmsofBTandPFOindicatethatatlengthscalesoverwhichexcitontransferandmigrationoccur͑i.e.,10nmandbelow͒,thereisacomplexsubstructurethatweassociatewithfine-scalephaseseparation.Suchaphaseseparationmighteffec-¨rstertransfer,tun-tivelyhinderexcitontransfer͑eitherbyFo
neling,orhopping͒betweenPFOandBTmolecules.InthePFO—-phasePFOsystemstudiedhere,theremaybeamuchmorehomogeneousmixofthe-phaseguestmol-eculeswithintheglassyPFOhostwhichcouldaccountfortheenhancedenergytransferratesthatweobserve.
Ithasbeenshown31,32,35thatexcitonmigrationeffectscanbeidentifiedbytime-dependentredshiftsofPLemission.SimilareffectsarefoundforSCand-phasePFOfilms.Theenergyshiftsofthepeaksobservedinthecwspectraofthe-phasefilmat446nm͑the0-0peak͒andat471nm͑the0-11255cmϪ1vibronicpeak͒areshowninFigure6͑a͒.ThecorrespondingshiftsinthepeaksobservedinthespectraoftheSCfilmat428nm͑the0-0peak͒andat456nm͑the1stvibronicpeak͒areshowninFigure6͑b͒.Toidentifythepeakwavelength,wefittedthespectraldatawiththeGaussianfunctions.TheenergeticlocationEofeachofthefeaturesfollowsalogarithmiclawasexpected32withEϳln(time),
FIG.6.͑a͒Thetemporalenergyshiftsofthepeaksdetected͑inthecwspectra͒at446nm͑filledcircles͒and471nm͑opencircles͒fora-phasefilm.͑b͒Thetemporalenergyshiftsofthepeaksdetected͑inthecwspectra͒at428nm͑solidsquares͒and456nm͑opensquares͒foraSCPFOfilm.Bothsetsofdatawereexcitedat365nmusingaTi:sapphirelaserandarefittedtoafunctionoftheformEϳln(t)͑solidline,seetextfordetails͒.Notethattheordinatescaleusedtoplottheenergy-shiftobservedintheSCPFOismorethanafactorof2largerthanthatusedforthe-phase.Thisisbecausethetime-dependentenergyshiftsobservedintheSCPFOweremorethanafactorof2largerthanthoseseeninthe-phasefilms.
indicatingthatweareindeedobservingadynamicrelaxationoftheexcitonsthroughtheinhomogeneouslybroadenedDOS.Itcanbeseenthatinthe-phasefilm,the0-0peakredshiftsbyapproximately(25Ϯ5)meVbetween0and900ps,withtheshiftmainlyoccurringinthefirst400psfollow-ingexcitation.AsenergytransferfromtheglassyPFOtothe-phasechainshasalreadyoccurredinthetimeintervalbe-fore5ps,itappearsthattherelaxationprocessweareob-servingiscausedbyexcitonmigrationthroughanensembleofhighlyconjugated-phasechains.Itcanbeseencon-verselythatthe0-0peakintheSCfilmshiftsinenergyshiftby(55Ϯ7)meVbetween0and900ps—avalueincloseaccordwithothermeasurementsonpolyfluorenes.31Wecanuseourresultstocomparetherelativeamountofdisorderin-phaseandSCPFOfilms.WefindthattheenergyshiftobservedinSCfilmsisapproximatelyafactorof2largerthanthatobservedin-phasefilms.WeproposethatthelargerenergyshiftthatweobserveintheSCfilmoriginatesfromtheeffectofdisorderthatbroadenstheDOS.Thisisentirelyconsistentwiththeobserveddifferencesinresolu-tionforthespectralfeaturesinSCand-phasePFOfilms;thelinewidthsofthe-phaseandSC͑0-0͒PLemissionpeaksat5Kare25and60meV,respectively.IfweequatetheenergyshiftobservedintheSCfilmfollowingexcitation͑55meV͒withthewidthoftheDOS͑ashasbeendonefollowingsiteselectivefluorescencemeasurements,29͒wefindthattheenergyshiftisconsistentwithestimatesofthetransportstatesDOSwidthfromtemperature-dependenttime-of-flightdata51thatwerefittedtotheGaussiandisorder
195333-7
M.ARIUetal.PHYSICALREVIEWB67,195333͑2003͒
model.52Inthesemeasurements,aGaussianwidthofϳ80meVwasfoundfor1to3mthickSCfilmsofPFO.AsexpectedwithintheGaussiandisordermodel,52thetrans-portDOSwidthissome1.5timestheDOSforneutralex-citedstates.Time-of-flightdataarenotavailablefor-phasesamplesanditwillbeinterestingtoseehowheterogeneoussamplesofthistypebehavewithregardtochargecarriertransport.
Intheaboveanalysis,wehaveassumedthattherelaxationobservedisnotduetovibronicrelaxationwithintheS1manifold.ThisisconsistentwiththedemonstrationthatinPPVanditsoligomers,sucharelaxationoccursonatimescaleshorterthan100fs.32Inaddition,commontoallphenyl/phenylenebasedpolymers,thevibrationalmodesthatcouplemoststronglywiththeelectronictransitionsofPFOareC-Cstretchmodesthathaveanenergybetween0.2and0.16eV.28,46Thisisanorderofmagnitudelargerthantheredshiftthatweobservein-phasePFO.
Inaseparatecontrolexperiment,wehavemeasuredthePLredshiftfrom-phasePFOat5Kfollowingresonantexcitationofthe-phasecomponentofthefilmwiththelasertunedto432nm.Thiswavelengthcorrespondstoapositionclosetothepeakofthe-phase0-0absorptionmaximumwhichat5Kpeaksat435nm.Inthiscase,weexpectalloftheexcitonstobedirectlycreatedon-phasechainsastheabsorptionoftheglassymatrixisverylowatthiswavelength.Followingresonantexcitation,wefindthattheenergyshiftfollowingexcitationisreducedtoϷ6meV.Hence,bydirectlypumpingclosetothepeakofthe-phase0-0absorptionmaximum,wepopulateareducedsubsetof-phasechainshavingalongerthanaverageelectroniccon-jugationlengthandthuslowerenergygap.Thisisincontrasttothecaseofexcitationstransferredto-phasechainsfromtheglassyPFO.Hereany-phasechaincanbe,inprinciple,populatedandthustheenergyspreadoftheexcitonstatesthatareexcitedismuchlarger,resultinginalargerredshift͑25meV͒.
Tohighlighttheroleofexcitondiffusionon-phasechains,weplotinFig.7aseriesofdecaytracesmeasuredbothatthehigh-energysideofeachvibronicreplica͑labeledA,C,E,andG)andattheirpeakpositions͑labeledB,D,F,andH).Forreference,wealsoreplotthecwPLemissionspectrummeasuredat5K͑followingexcitationat3nm—i.e.,nonresonantexcitation͒andindicatethepositionsofthevariousmeasurementswitharrowsandcorrespondingalpha-beticallabels.Openarrowsdelineatevibronicpeakmeasure-mentsandfilledarrowsmeasurementsonthehigh-energysideofeachpeak.Itisfoundthatatallofthesewavelengths,thePLdecaycannotbedescribedbyasingleexponentialfunction.Ratherwefindthateachtraceisbetterfittedbytwoexponentialfunctionseitherhavingtheformof͑a͒bothafastandaslowdecaylifetimeorhavingtheformof͑b͒aninitialriseinintensityfollowedbyaslowdecay.Toquanti-tativelydescribethetime-dependentPL,thedatawerefittedtoafunctionoftheformM1eϪt/1ϩM2eϪt/2,whereMistherelativeweightingofeachexponentialandisadecaylifetime.Inthecase,wherewedetectaninitialriseinPLintensity,oneoftheexponentialprefactorshasanegativevalue.
FIG.7.ThePLdecaysmeasuredfora-phasefilmat5Kfollowingexcitationat365nmusingaTi:sapphirelaserareshownplottedonalogarithmicordinatescale.Measurementsmadeatwavelengthscorrespondingtothehigh-energysideofeachofthevibronicpeaksaremarkedA,C,E,andG.Thefilledarrowsidentifythewavelengthatwhichthemeasurementsweremadewithrespecttothe5KcwPLspectrum͑plottedonalogarithmicscaleintheleft-handpanel͒.DecaytracesB,D,F,andHweremeasuredatthepeakofeachofthevibronictransitions.Thecorrespondingwave-lengthsareidentifiedbytheopenarrowsintheleft-handpanel.
Specifically,wefindthatcase͑a͒͑fastandslowdecaycomponents͒areonlyobservedatthehigh-energysideofeachvibronictransition.Forexample,at439nm͑corre-spondingtothehigh-energysideofthe0-0peak͒,thePLdecayswithafastcomponentof25ps(Mϭ0.8)andaslowcomponentof150pslifetime(Mϭ0.2).Thefastdecaycomponentbecomesprogressivelylongeratwavelengthsclosetothepeakofthevibronictransition͑e.g.,itisϷ100psat441nm͒.Wealsoobservethatthefastriseandslowdecay͓case͑b͔͒isonlyobservedclosetothepeakofthetransition.Forexample,at444and477nm͑closetothepeakofthetransitionsobservedat445and478nm͒,therisetimesarebetween60and70ps,respectively,whicharethenfollowedbyslowdecaysof700and480ps,respectively.
IV.DISCUSSION
Weareabletoqualitativelydescribethisbehaviorbasedonamodelinvolvingexcitonmigration.Followinginitialexcitation,excitonstransferfromsitesofhigherenergytothoseoflowerenergy,losingexcessenergytothesurround-ingthermalreservoir.WhiletheargumentspresentedbelowapplyequallytotheSCandthe-phasecontainingPFOfilms,westressthatinthecaseofthe-phasecontainingfilm,weareonlyatthispointconcernedwiththeprocessesthatoccuraftertheexcitonshavebeentransferredfromtheglassyPFOmatrixtotheensembleof-phasechains.ThetransferratektfromasiteofenergyEiisproportionaltothenumberofsitesintheDOSwithenergylowerthanEiac-cordingto
kt͑Ei͒ϰ
͵Ei
Ϫϱ
k͑E͒͑E͒dE,͑1͒
whereEiistheexcitonenergy,(E)istherelativedensityofstates,andk(E)expressesthefactthatenergytransferbe-tweenstatesofdifferingenergymaybeafunctionoftheirenergeticseparation.Itcanbeseenthatastheenergyofthe
195333-8
EXCITONMIGRATIONIN-PHASEPOLY...PHYSICALREVIEWB67,195333͑2003͒
excitondecreases,thetransferratealsodecreases.Theob-servedlifetimetotatanyvalueofenergyEcanbeex-pressedusing
totϭ
1
,
krϩknrϩkt͑t,E͒͑2͒
wherekr,knr,kt(t,E)indicatetheradiative,nonradiative,andtheexcitontransferrates,respectively.Asmigrationpro-ceeds,thetransferratekt(t,E)approacheszeroandthusthepopulationdecaytimeincreases.TheenergyoftheexcitoneventuallyreachesaminimumenergyvalueofElocfromwherenofurthertransfertositesoflowerenergycanbeachieved.Thus,asindicatedbyEq.͑2͒,weobserveanin-creaseinthepopulationlifetimeastheexcitonsbecomelo-calizedinthetailoftheDOS.Suchexcitonsfindthatthenumberofsitesoflowerenergyontowhichtheycantransferissignificantlyreduced,resultinginanincreaseofthedecaylifetime.
ThedecayoffluorescencehavingalifetimesummarizedbyEq.͑2͒takestheformofasingleexponentialgivenbyN(t)ϭN0eϪt/tot.However,asitwasshowninFig.7thePLdynamicsatthehigh-energysideofeachvibronicpeakcanbedescribedusingtwoexponentialfunctionshavingafastandaslowdecaylifetime.Todescribethebiexponentialde-caythatweobserve,wemakethesimpleassumptionthattheexcitonpopulationNtotiscomposedoftwoessentiallyinde-pendentpopulations,whereNtotϭN1ϩN2.ThesolutionofthisequationhastherequiredbiexponentialformNtot(t)ϭM1eϪt/1ϩM2eϪt/2.Weassociatethefast͑25ps͒decaycomponentofthePLthatweobserveatthehigh-energysideofthevibronicpeakswithexcitonsthatareundergoingrapidenergytransfertolower-lyingstates.Theslower͑150ps͒decaycomponentismostlikelytooriginatefromtheradia-tivedecayofexcitonsthathavebecomelocalizedandareunabletoundergofurthertransfertolower-lyingstates.WeobservesuchfastinitialdecaysofPLatthehigh-energysideofeachofthevibronicpeaks,althoughitislesspronouncedwherethepeaksoverlaponeanother͑e.g.,forthepeaksat471and478nm͒.Transferofexcitonstolower-lyingenergystatescanalsobeinferredbythefastgrow-in͑60-70ps͒ofthePLthatisobservedaroundeachvibronicpeak.Thefactthatallofthevibronicpeaksredshiftatapproximatelythesamerateindicatesthatweareindeedobservingtherelax-ationofexcitonsthroughanensembleofdiscretestates.In-creasesindecaylifetimehaveonlypreviouslybeenobservedformeasurementsacrossthe0-0vibronictransitionsofcon-jugatedpolymers.30,32–34,38Thefactthatwehavebeenabletodetectsuchlifetimevariationsacrossallofthevibronictransitionsisafurthertestamenttotheunusuallywell-resolvedemissionspectraof-phasePFOfilms.Withthesesamples,itispossibletoobserveeffectsthatareusuallymaskedbyinhomogeneousbroadeningofthevibronicpro-gression.
Wenowdiscusstheevolutionoftheintensityofthedif-ferentfeaturesmeasuredinthePLspectraasafunctionoftimefollowingopticalexcitation.Forthesakeofsimplicity,weconcentrateourdiscussiononmeasurementsof-phasefilms;however,similarresultsarealsoobtainedfromSC
FIG.8.The5K-phasePLemissionintensityofthepeaksat459and471nmrelativetothatat446nm͑0-0peak͒plottedasafunctionoftimefollowingexcitationat365nmusingaTi:sapphirelaser.
films.Figure8showstherelativeintensityofthevibronicpeaksat459nmand471nmrelativetothe0-0peak͑at445nm͒measuredat5Kasafunctionoftimefollowingexcita-tionat365nmwiththepulsedTi:sapphirelaser.Itcanbeseenthatbothofthepeaksfallinintensityto25%and35%,respectively,oftheirinitialvaluesoverthetimeintervalbe-tween5and900ps.Weconsiderthatthiseffectisafurthermanifestationofexcitonmigrationtolowerenergysites.Rigidapolarmolecules͑as-phasePFOchainsareexpectedtobeatlowtemperature͒areoftencharacterizedbyverysimilargroundandexcitedstategeometries.Iftheconfigu-rationforthegroundandexcitedstatesisthesame,theor-thogonalityoftheeigenstatesmakesthe0-0transitiontheonlyallowedone.Vibronicallycoupledtransitionsbecomemoreallowedastheconfigurationcoordinatesbetweenthegroundandexcitedstatesdiverge.TheweightinggofthevibronicpeakscanbedescribedbyaPoissondistributiong(n)ϭSneϪS/n!,wherenisthevibrationalquantumnum-berandSistheHuang-Rhysparameterthatdescribesthemostprobablevibrationallevelexcitedduringtheelectronictransition.Extendedpolymerchainsareexpectedtobemorerigidandarealsomoreconjugated,i.e.,theyhavelowerenergygaps.Thus,asexcitonrelaxationproceeds͑towardssmallerenergygaps͒,theemissionincreasinglyoccursfrommorerigidpolymerchainsforwhichSisexpectedtobesmaller.Correspondingly,theweightingshiftstothelowernvibronicpeakswiththe0-0,ultimatelygainingalltheoscil-latorstrengthwhenSϭ0͑nodisplacementbetweengroundandexcitedstateconfigurationcoordinates͒.ThisbehaviorisshownschematicallyinFig.9with⌬Qtheshiftinconfigu-rationcoordinatebetweengroundandexcitedstategeom-etries.
AtRT,wefindthatatallwavelengthsbetween400and490nm,the-phasePLdecayswithanaveragelifetimeof(400Ϯ50)ps.Overthiswavelengthrange,weobservethatthePLemissionstartstodecayoveratimescalethatisshorterthanthetemporalresolutionofourdetectorandthatnogrow-inofintensityisobserved.ThePLemissionspec-trummeasuredat5psissimilartothesteady-statecwemis-sion,andnoenergyshiftinthepositionofthevibronicpeaksisobserved.ItappearsthatatRT,theexcitonmigrationis
195333-9
M.ARIUetal.PHYSICALREVIEWB67,195333͑2003͒
FIG.9.Aschematicrepresentationoftheexcitonmigrationpro-cess.⌬Qindicatesthechangeintheequilibriumconfigurationbe-tweenexcitedandgroundstates.
muchfasterthanthetemporalresolutionofourdetector,con-firmingotherreports,26,27thatsuchprocesseshaveather-mallyactivatedcomponent.
V.CONCLUSIONS
Weareabletomonitortheprocessesofexcitonmigrationinourfilmsusingthedynamicredshiftofemissionfollowingexcitation.TheDOSwidthsdeducedfromtheseexperimentsareconsistentwithspectrallinewidthsandwithestimatesfortransportstateDOSwidthsestimatedfromtemperature-dependenttime-of-flightexperiments.ExcitonmigrationisalsorevealedbyafastdecayofthePLatthehigh-energysideofeachofthevibronictransitionsdetectedinemission,andariseofintensitydetectedclosetotheirpeak.Thefastcomponentindicatesarapiddepletionofthehigherenergysites,whiletherisingcomponentindicatesthecorrespondingoccupationoflower-lyingsites.Excitonmigrationtoex-tendedpolymerchainswithalowerenergygapandhigherrigidityisfurtherrevealedbyatime-dependentdecreaseintheHuang-Rhysparameter.
ACKNOWLEDGMENTS
Wehaveperformedcwandtime-resolvedspectroscopyexperimentsonspin-coatedand-phasePFOfilmsat5Kandatroomtemperature.Wefindthatduetotherigidandextendednatureof-phasePFO,the5KPLspectraarecharacterizedbyaseriesofverywell-resolvedvibronicpeaks.ByacomparisonwiththepublishedRamandata,wehavebeenabletomakeatentativeassignmentofthevi-bronicmodesofthePFOmoleculethatcouplewiththeelec-tronictransition.Byfollowingthetime-resolvedPLemissionafterultrafastexcitation,wefindthatenergytransferoccursfromtheglassyPFOmatrixtothe-phasechainsinatimeshorterthanthetemporalresolutionofourdetector͑5ps͒.
WeacknowledgetheU.K.HEFCEforitssupportofthisresearchviatheJREIgrant‘‘Ultrafastfluorescencemeasure-mentsinphysics,chemistryandbiology’’andtheU.K.EPSRCviaresearchgrants‘‘Femtoseconddynamicsinnovelorganicandinorganicsemiconductors’’͑GrantNo.͒GR/M22529,‘‘Electronicstructureofphenyl-basedconjugatedoligomersandpolymers’’͑GrantNo.͒GR/M21201and‘‘Polymerblendsemiconductordevices’’͑GrantNo.͒GR/R261.M.A.acknowledgesboththeEPSRCandtheSar-dinianRegionalGovernmentofItalyforfinancialsupport.D.G.L.acknowledgestheEPSRCforfinancialsupport.TheauthorsalsothankRobertFletcherandJimO’BrienoftheDowChemicalCompany͑USA͒forprovidingthePFOpoly-merusedinthisworkandPaulLaneforacriticalreadingofthismanuscript.
*Presentaddress:TheBlackettLaboratory,ImperialCollege
London,PrinceConsortRoad,SW72BZ,London,UK.
Correspondingauthors.Electronicaddress:d.g.lidzey@sheffield.ac.ukElectronicaddress:d.bradley@ic.ac.uk‡
Presentaddress:SonyCorporation,FusionDomainLaboratory,R&DGroupHanedaTec.5-21-15HigashikojiyaOta-ku,144-0033Tokyo,Japan.1
A.Kraft,A.Grimsdale,andA.Holmes,Angew.Chem.,Int.Ed.Engl.37,402͑1998͒.2
M.T.Bernius,M.Inbasekaran,J.O’Brien,andW.S.Wu,Adv.Mater.͑Weinheim,Ger.͒12,1737͑2000͒.3
A.W.Grice,D.D.C.Bradley,M.T.Bernius,M.Insbasekaran,W.W.Wu,andE.P.Woo,Appl.Phys.Lett.73,629͑1998͒.4
J.J.M.Halls,A.C.Arias,J.D.Mackenzie,W.S.Wu,M.Insbaseka-ran,E.P.Woo,andR.H.Friend,Adv.Mater.͑Weinheim,Ger.͒12,498͑2000͒.5
H.Sirringhaus,R.J.Wilson,R.H.Friend,M.Inbasekaran,W.Wu,E.P.Woo,M.Grell,andD.D.C.Bradley,Appl.Phys.Lett.77,406͑2000͒.6
M.Ariu,D.G.Lidzey,M.Sims,A.J.Cadby,P.A.Lane,andD.D.C.Bradley,J.Phys.:Condens.Matter14,9975͑2002͒.7
M.Redecker,D.D.C.Bradley,M.Insbasekaran,andE.P.Woo,Appl.Phys.Lett.77,406͑2000͒.8
M.Grell,D.D.C.Bradley,M.Inbasekaran,andE.P.Woo,Adv.Mater.͑Weinheim,Ger.͒8,798͑1997͒.9
K.S.Whitehead,M.Grell,D.D.C.Bradley,M.Jandke,andP.
†
Strohriegl,Appl.Phys.Lett.76,2946͑2000͒.
D.Neher,Macromol.RapidCommun.22,1365͑2001͒.11
B.Schartel,V.Wachtendorf,M.Grell,D.D.C.Bradley,andM.Hennecke,Phys.Rev.B60,277͑1999͒.12
M.Redecker,D.D.C.Bradley,M.Inbasekaran,andE.P.Woo,Appl.Phys.Lett.74,1400͑1999͒.13
T.Virgili,D.G.Lidzey,M.Grell,S.Walker,A.Asimakis,andD.D.C.Bradley,Chem.Phys.Lett.341,219͑2001͒.14
G.Heliotis,R.Xia,andD.D.C.Bradley͑unpublished͒.15
M.Grell,D.D.C.Bradley,G.Ungar,J.Hill,andK.S.Whitehead,Macromolecules32,5810͑1999͒.16
M.Leclerc,J.Polym.Sci.,PartA:Polym.Chem.39,2867͑2001͒.17
U.ScherfandE.J.W.List,Adv.Mater.͑Weinheim,Ger.͒14,477͑2002͒.18
J.J.M.Halls,K.Pichler,R.H.Friend,S.C.Moriatti,andA.B.Holmes,Synth.Met.77,277͑1996͒.19
T.StubingerandW.Brutting,J.Appl.Phys.90,3632͑2001͒.20
A.Haugeneder,M.Neges,C.Kallinger,W.Spirkl,U.Lemmer,J.
¨llen,Phys.Feldmann,U.Scherf,E.Harth,A.Gugel,andK.Mu
Rev.B59,15346͑1999͒.21
M.Stoessel,G.Wittmann,J.Staudigel,F.Steuber,J.Blassing,W.Roth,H.Klausmann,W.Rogler,J.Simmerer,A.Winnacker,M.Inbasekaran,andE.P.Woo,J.Appl.Phys.87,4467͑2000͒.22¨rster,inModernQuantumChemistryeditedbyO.SinanogluT.Fo
͑Academic,NewYork,1965͒,Pt.2.
10
195333-10
EXCITONMIGRATIONIN-PHASEPOLY...
23
PHYSICALREVIEWB67,195333͑2003͒
37
A.Shoustikov,Y.You,P.E.Burrows,M.E.Thompson,andS.R.Forrest,Synth.Met.91,217͑1997͒.24
T.Virgili,D.G.Lidzey,andD.D.C.Bradley,Adv.Mater.͑Wein-heim,Ger.͒12,58͑2000͒.25
T.-Q.Nguyen,J.Wu,V.Doan,B.J.Schwartz,andS.H.Tolbert,Science͑Washington,DC,U.S.͒288,652͑2000͒.26
A.R.Buckley,M.D.Rahn,J.Hill,J.Cabanillas-Gonzales,A.M.Fox,andD.D.C.Bradley,Chem.Phys.Lett.339,331͑2001͒.27¨ter,U.E.J.W.List,C.Creely,G.Leising,N.Schulte,A.D.Schlu
¨llen,andW.Graupner,Chem.Phys.Lett.325,132Scherf,K.Mu
͑2000͒.28
N.T.Harrison,D.R.Baigent,I.D.W.Samuel,R.H.Friend,A.C.Grimsdale,S.C.Moratti,andA.B.Holmes,Phys.Rev.B53,15815͑1996͒.29¨ssler,D.A.S.Heun,R.F.Mahrt,A.Greiner,U.Lemmer,H.Ba
Halliday,D.D.C.Bradley,P.L.Burn,andA.B.Holmes,J.Phys.:Condens.Matter5,247͑1993͒.30¨ssler,andD.D.C.Bradley,R.Mahrt,J.Yang,A.Greiner,H.Ba
Macromol.Chem.,RapidCommun.11,415͑1990͒.31¨bner,M.Oestreich,andH.Ba¨ssler,J.Phys.S.C.J.Meskers,J.Hu
Chem.B105,9139͑2001͒.32¨ssler,R.Kersting,U.Lemmer,R.F.Mahrt,K.Leo,H.Kurz,H.Ba
¨bel,Phys.Rev.Lett.70,3820͑1993͒.andE.O.Go
33¨ssler,andU.Lemmer,R.F.Mahrt,Y.Wada,A.Greiner,H.Ba
¨bel,Appl.Phys.Lett.62,2827͑1993͒.E.O.Go
34¨ssler,andU.Lemmer,R.F.Mahrt,Y.Wada,A.Greiner,H.Ba
¨bel,Chem.Phys.Lett.209,243͑1993͒.E.O.Go
35
I.D.W.Samuel,B.Crystall,G.Rumbles,P.L.Burn,A.B.Holmes,andR.H.Friend,Chem.Phys.Lett.213,472͑1993͒.36
M.Yan,L.J.Rothberg,F.Papadimitrakopoulos,M.E.Galvin,andT.M.Miller,Phys.Rev.Lett.73,744͑1994͒.G.R.Hayes,I.D.W.Samuel,andR.T.Phillips,Phys.Rev.B,R8301͑1996͒.38
U.Lemmer,S.Heun,R.F.Mahrt,U.Scherf,M.Hopmeier,U.
¨bel,K.Mu¨llen,andH.Ba¨ssler,Chem.Phys.Siegner,E.O.Go
Lett.240,373͑1995͒.39
H.Becker,S.E.Burns,andR.H.Friend,Phys.Rev.B56,13͑1997͒.40
L.M.HerzandR.T.Phillips,Phys.Rev.B61,13691͑2000͒.41¨llen,L.M.Herz,C.Silva,R.T.Phillips,S.Setayesh,andK.MuChem.Phys.Lett.347,318͑2001͒.42
O.J.KorovyankoandZ.V.Vardeny,Chem.Phys.Lett.356,361͑2002͒.43
M.A.Stevens,C.Silva,D.M.Russell,andR.H.Friend,Phys.Rev.B63,165213͑2001͒.44
D.D.C.Bradley,M.Grell,X.Long,H.Mellor,A.W.Grice,M.Inbasekaran,andE.P.Woo,Proc.SPIE3145,2͑1997͒.45
A.J.Cadby,P.A.Lane,H.Mellor,S.J.Martin,M.Grell,C.Gie-beler,D.D.C.Bradley,M.Wohlgenannt,C.An,andZ.V.Vard-eny,Phys.Rev.B62,15604͑2000͒.46
M.Ariu,D.G.Lidzey,M.Lavrentiev,D.D.C.Bradley,M.Jandke,andP.Strohriegl,Synth.Met.116,217͑2001͒.47
J.A.Popleetal.,computercodeGuassian98W͑GaussianInc.,Pittsbuirgh,PA,2001͒.48
http://www.gaussian.com49
S.WebsterandD.N.Batchelder,Polymer37,4961͑1996͒.50
G.Cerullo,S.Stagira,M.Zavelani-Rossi,S.DeSilvestri,T.Vir-gili,D.G.Lidzey,andD.D.C.Bradley,Chem.Phys.Lett.335,27͑2001͒.51
D.D.C.Bradley,T.Kreouzis,M.Redecker,A.Campbell,andJ.Nelson͑unpublished͒.52¨ssler,Phys.StatusSolidiB175,15͑1993͒.H.Ba
195333-11
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务