搜索
您的当前位置:首页正文

生化题库及答案

来源:爱够旅游网
生物化学习题及答案

第一部分:名词解释

1、氨基酸(amino acids): 是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连接在α-碳上。氨基酸是肽和蛋白质的构件分子。 2、必需氨基酸(essential amino acids):指人(或其它脊椎动物)自己不能合成,需要从饮食中获得的氨基酸,例如赖氨酸、苏氨酸等氨基酸。 3、非必需氨基酸(nonessential amino acids):指人(或其它脊椎动物)自己能由简单的前体合成的,不需要由饮食供给的氨基酸,例如甘氨酸、丙氨酸等氨基酸。 4、等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。

5、茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6、肽键(peptide bond):一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 7、肽(peptides):两个或两个以上氨基酸通过肽键共价连接形成的聚合物。

8、蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。

9、层析(chromatography):按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。

10、 离子交换层析(ion-exchange column chromatography):使用带有固定的带电基团的聚合树脂或凝胶层析柱分离离子化合物的层析方法。 11、 透析(dialysis):通过小分子经半透膜扩散到水(或缓冲液)的原理将小分子与生物大分子分开的一种分离纯化技术。

12、 凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析(molecular-exclusion chromatography)。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13、 亲和层析(affinity chromatography):利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其它分子的层析技术。 14、 高压液相层析(HPLC,high-pressure liquid chromatography):使用颗粒极细的介质,在高压下分离蛋白质或其它分子混合物的层析技术。 15、 凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。 16、 SDS-聚丙烯酰胺凝胶电泳:(SDS-PAGE,sodium dodecyl sulfate-polyacrylamide gel electrohoresis)

在有去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAGE只是按照分子大小分离的,而不是根据分子所带的电荷和大小分离的。

17、 等电聚焦电泳(IFE,isoelectric focusing electrophoresis):利用特殊的一种缓冲液(两性电解质)在聚丙烯酰胺凝胶内制造一个pH梯度,电泳时每种蛋白质就将迁移到它的等电点(pI)处,即梯度中的某一pH时,就不再带有净的正或负电荷了。

18、 双向电泳(two-dimensional electrophoresis):是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。

1

19、 Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

20、 同源蛋白质(homologous proteins):来自不同种类生物、而序列和功能类似的蛋白质。例如血红蛋白。 21、 构型(configuration):一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。

22、 构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 23、 肽单位(peptide unit):又称之肽基(peptide group),是肽链主链上的重复结构。是由参与肽键形成的氮原子和碳原子和它们的4个取代成分:羰基氧原子、酰胺氢原子和两个相邻的α-碳原子组成的一个平面单位。

24、 蛋白质二级结构(protein secondary structure):在蛋白质分子中的局部区域内氨基酸残基的有规则的排列,常见的二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。

25、 蛋白质三级结构(protein tertiary structure):蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕、折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用、氢键范德华力和盐键(静电作用力)维持的。

26、 蛋白质四级结构(quaternary structure):多亚基蛋白质的三维结构。实际上是具有三级结构的多肽链(亚基)以适当方式聚合所呈现出的三维结构。

27、 α-螺旋(α-helix):蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。在典型的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。

28、 β-折叠(β-sheet):是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);或者是反平行排列(肽链反向排列)。

29、 β-转角(β-turn):也是多肽链中常见的二级结构,连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个氨基酸残基以上的转角又常称之环(loops)。常见的转角含有4个氨基酸残基,有两种类型。转角I的特点是:第1个氨基酸残基羰基氧与第4个残基的酰胺氮之间形成氢键;转角II的第3个残基往往是甘氨酸。这两种转角中的第2个残基大都是脯氨酸。

30、 二级结构(super-secondary structure):也称之基元(motif)。在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成的有规则、在空间上能辨认的二级结构组合体。

31、 结构域(domain):在蛋白质三级结构内的独立折叠单元。结构域通常都是几个超二级结构单元的组合。

32、 纤维蛋白(fibrous proteins):一类主要的不溶于水的蛋白质,通常都含有呈现相

2

同二级结构的多肽链。许多纤维蛋白结合紧密,并为单个细胞或整个生物体提供机械强度,起着保护或结构上的作用。

33、 球蛋白(globular proteins):一类蛋白质,许多都溶于水,球蛋白是紧凑的、近似球形的、含有折叠紧密的多肽链。典型的球蛋白含有能特异识别和结合其它化合物的凹陷或裂隙部位。 34、 角蛋白(keratins):由处于α-螺旋或β-折叠构象的平行的多肽链组成的不溶于水的起着保护或结构作用的蛋白质。 35、 胶原(蛋白)(collagen):是动物结缔组织中最丰富的一种结构蛋白,它是由原胶原蛋白分子组成,原胶原蛋白是一种具有右手超螺旋结构的蛋白。每个原胶原分子都是由3条特殊的左手螺旋(螺距0.95nm,每一圈含有3.3个残基)的多肽链右手旋转形成的。

36、 疏水相互作用(hydrophobic interaction):非极性分子之间的一种弱的、非共价的相互作用。这些非极性分子(如一些中性氨基酸残基,也称之疏水残基)在水相环境中具有避开水而相互聚集的倾向。 37、 伴娘蛋白(chaperone):与一种新合成的多肽链形成复合物并协助它正确折叠成具有生物功能构象的蛋白质。伴娘蛋白可以防止不正确折叠中间体的形成和没有组装的蛋白亚基的不正确的聚集,协助多肽链跨膜转运以及大的多亚基蛋白质的组装和解体。

38、 二硫键(disulfide bond):通过两个(半胱氨酸)巯基的氧化形成的共价键。二硫键在稳定某些蛋白的三维结构上起着重要的作用。 39、 范德华力(van der Waals force):中性原子之间通过瞬间静电相互作用产生的一种弱的分子之间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华引力最强。强的范德华排斥作用可以防止原子相互靠近。 40、 蛋白质变性(denaturation):生物大分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失。 41、 复性(renaturation):在一定的条件下,变性的生物大分子恢复成具有生物活性的天然构象的现象。 42、 肌红蛋白(myoglobin):是由一条肽链和一个血红素辅基组成的结合蛋白,是肌肉内储存氧的蛋白质,它的氧饱和曲线为双曲线型。 43、 血红蛋白(hemoglobin):是由含有血红素辅基的4个亚基组成的寡聚蛋白。血红蛋白负责将氧由肺运输到外周组织,它的氧饱和曲线为S型。 44、 波尔效应(Bohr effect):CO2浓度的增加降低细胞内的pH,引起红细胞内血红蛋白的氧亲和力下降的现象。

45、 别构效应(allosteric effect):又称之变构效应。是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。 46、 镰刀型细胞贫血病(sickle-cell anemia):血红蛋白分子遗传缺陷造成的一种疾病,病人的大部分红细胞呈镰刀状。其特点是病人的血红蛋白β-亚基N端的第6个氨基酸残基是缬氨酸,而不是正常的谷氨酸残基。

47、 酶(enzyme):生物催化剂,除少数RNA外几乎都是蛋白质。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。 48、 全酶(holoenzyme):具有催化活性的酶,包括所有的必需的亚基、辅基和其它的辅助因子。

49、 脱辅基酶蛋白(apoenzyme):酶中除去催化活性可能需要的有机或无机辅助因子或

3

辅基后的蛋白质部分。 50、 酶活力单位(U,active unit):酶活力的度量单位。1961年国际酶学会议规定:1个酶活力单位是指在特定条件(25℃,其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量,或是转化底物中1微摩尔的有关基团的酶量。

51、 比活(specific activity):每分钟每毫克酶蛋白在25℃下转化的底物的微摩尔数(μm)。比活是酶纯度的测量。 52、 活化能(activation energy):将一摩尔反应底物中的所有分子由基态转化为过渡态所需要的能量。

53、 活性部位(active site):酶中含有底物结合部位和参与催化底物转化为产物的氨基酸残基的部分。活性部位通常都位于蛋白质的结构域或亚基之间的裂隙或是蛋白质表面的凹陷部位,通常都是由在三维空间上靠得很近的一些氨基酸残基组成的。 54、 酸-碱催化(acid-base catalysis):质子转移加速反应的催化作用。 55、 共价催化(covalent catalysis):一个底物或底物的一部分与催化剂形成共价键,然后被转移给第二个底物。许多酶催化的基团转移反应都是通过共价催化方式进行的。

56、 靠近效应(proximity effect):非酶促反应或酶促反应速率的增加是由于活性部位处反应剂有效浓度增大(底物靠近活性部位)的结果,这将导致更频繁地形成过渡态。

57、 初速度(initial velocity):酶促反应最初阶段底物转化为产物的速度,这一阶段产物的浓度非常低,其逆反应可以忽略不计。

58、 米氏方程(Michaelis-Menten equation):表示一个酶促反应的起始速度(v)与底物浓度([S])关系的速度方程,v=Vmax[S]/(Km+[S])。 59、 米氏常数(Michaelis constant,)(Km):对于一个给定反应,导致酶促反应速度的起始速度(v0)达到最大反应速度(Vmax)一半时的底物浓度。 60、 催化常数(catalytic number)(Kcat):也称之转换数(turnover number)。一个动力学常数,是在底物浓度处于饱和状态下,一个酶(或一个酶活性部位)催化一个反应有多快的测量。催化常数等于最大反应速度除以总的酶浓度(Vmax/[E]total),或者是每摩尔酶活性部位每秒钟转化为产物的底物的摩尔数。

61、 双倒数作图(double-reciprocal plot):也称之Lineweaver-Burk作图。一个酶促反应速度的倒数(1/v)对底物浓度的倒数(1/[s])的作图。X和y轴上的截距分别代表米氏常数(Km)和最大反应速度(Vmax)的倒数。 62、 竞争性抑制作用(competitive inhibition):通过增加底物浓度可以逆转的一种酶抑制类型。一个竞争性抑制剂通常与正常的底物或配体竞争同一个蛋白质的结合部位。这种抑制使得Km增大,而Vmax不变。

63、 竞争性抑制作用(noncompetitive inhibition):抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。这种抑制使得Vmax变小,但Km不变。

64、 反竞争性抑制作用(uncompetitive inhibition):抑制剂只与酶-底物复合物结合,而不与游离酶结合的一种酶促反应抑制作用。这种抑制作用使得Vmax,Km都变小,但Vmax/Km比值不变。

65、 丝氨酸蛋白酶(serine protease):活性部位含有在催化期间起着亲核体作用的丝氨酸残基的蛋白酶。 66、 酶原(zymogen):通过有限蛋白水解能够由无活性变成具有催化活性的酶前体。 67、 调节酶(regulatory enzyme):位于一个或多个代谢途径内的一个关键部位的酶,

4

它的活性根据代谢的需要被增加或降低。 68、 别构酶(allosteric enzyme):一种其活性受到结合在活性部位以外部位的其它分子调节的酶。

69、 别构调节剂(allosteric modulator):结合在别构酶的调节部位调节该酶催化活性的生物分子,别构调节剂可以是激活剂,也可以是抑制剂。 70、 齐变模式(concerted model):相同配体与寡聚蛋白协同结合的一种模式。按照最简单齐变模式,由于一个底物或别构调节剂的结合,蛋白质的构象在T(对底物亲和性低的构象)和R(对底物亲和性高的构象)之间变换。这一模式提出所有蛋白质的亚基都具有同样的构象,或是T,或是R构象。 71、 序变模式(sequential model):相同配体与寡聚蛋白协同结合的另外一种模式。按照最简单的序变模式,一个配体的结合会诱导它结合的亚基的三级结构的变化,以及使相邻亚基的构象发生很大的变化。按照序变模式,只有一个亚基对配体具有高的亲和性。

72、 同功酶(isoenzyme或isozyme):催化同一化学反应而化学组成不同的一组酶。它们彼此在氨基酸序列、底物的亲和性等方面都存在着差异。 73、 别构调节物(allosteric modulator):也称之别构效应物(allosteric effector)。结合在别构酶的调节部位,调节酶催化活性的生物分子。别构调节物可以是激活剂或抑制剂。

74、 维生素(vitamin):是一类动物本身不能合成但对动物生长和健康又是必需的有机化合物,所以必须从饮食中获得。许多辅酶都是由维生素衍生的。 75、 水溶性维生素(water-soluble vitamins):一类能溶于水的有机营养分子。其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。 76、 脂溶性维生素(lipid vitamins):由长的碳氢链或稠环组成的聚戊二烯化合物。脂溶性维生素包括维生素A、D、E和K,这类维生素能被动物贮存。 77、 辅酶(coenzyme):某些酶在发挥催化作用时所需要的一类辅助因子,其成分中往往含有维生素。

78、 辅基(prosthetic group):是与酶蛋白共价结合的金属离子或一类有机化合物,用透析法不能除去。辅基在整个酶促反应过程中始终与酶的特定部位结合。

79、 尼克酰胺腺嘌呤二核苷酸和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,nicotinamide adenine dinucleotide phosphate):含有尼克酰胺的辅酶,在某些氧化还原反应中起着氢原子和电子载体的作用,常常作为脱氢酶的辅酶。 80、 黄素单核苷酸(FMN, flavin mononucleotide):核黄素磷酸,是某些氧化还原酶的辅酶。

81、 黄素腺嘌呤二核苷酸(FAD, flavin adenine dinucleotide):是某些氧化还原酶的辅酶,含有核黄素。

82、 硫胺素焦磷酸(thiamine pyrophosphate):是维生素B1的辅酶形式,参与转醛基反应。

83、 磷酸吡哆醛(pyidoxal phosphate):是维生素B6(吡哆醇)的衍生物,是转氨酶、脱羧酶和消旋酶的辅酶。 84、 生物素(biotin):参与脱羧反应的一种酶的辅助因子。 85、 辅酶A(coenzyme A):一种含有泛酸的辅酶,在某些酶促反应中作为酰基的载体。 86、 类胡萝卜素(carotenoids):由异戊二烯组成的脂溶性光合色素。 87、 转氨酶(transaminases):也称之氨基转移酶(aminotransferases),在该酶的催化下一个α-氨基酸的氨基转可移给另一个α-酮酸。

5

88、 醛糖(aldoses):一类单糖,该单糖中氧化数最高的碳原子(指定为C-1)是个醛基。

89、 酮糖(ketoses):一类单糖,该单糖中氧化数最高的碳原子(指定为C-2)是个酮基。

90、 异头物(anomers):仅在氧化数最高的碳原子(异头碳)具有不同构型的糖分子的两种异构体。

91、 异头碳(anomeric carbon):一个环化单糖的氧化数最高的碳原子。异头碳具有一个羰基的化学反应性。

92、 变旋(mutarotation):一个吡喃糖、呋喃糖或糖苷伴随着它们的α-和β-异构形式的平衡而发生的比旋度变化。 93、 单糖(monosaccharide):由三个或更多碳原子组成的具有经验公式(CH2O)n的简单糖。

94、 糖苷(glycosides):单糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基缩合形成的含糖衍生物。

95、 糖苷键(glycosidic bond):一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之间缩合形成的缩醛或缩酮键,常见的糖苷键有O-糖苷键和N-糖苷键。

96、 寡糖(oligoccharide):由2个~20个单糖残基通过糖苷键连接形成的聚合物。 97、 多糖(polysaccharide):20个以上的单糖通过糖苷键连接形成的聚合物。多糖链可以是线性的或带有分支的。 98、 还原糖(reducing sugar):羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。 99、 淀粉(starch):一类可作为植物中贮存多糖的葡萄糖残基的同聚物。由两种形式的淀粉:一种是直链淀粉,是没有分支的只是通过α-(1→4)糖苷键连接的葡萄糖残基聚合物。另一种是支链淀粉,是含有分支的α-(1→4)糖苷键连接的葡萄糖残基聚合物,支链在分支点处通过α-(1→6)糖苷键与主链相连。 100、 糖原(glycogen):是含有分支的α-(1→4)糖苷键连接在一起的葡萄糖的同聚物,支链在分支点处通过α-(1→6)糖苷键与主链相连。

101、 极限糊精(limit dexitrin):是指支链淀粉中带有支链的核心部分,该部分在支链淀粉经淀粉酶水解作用、糖原磷酸化酶或淀粉磷酸化酶作用后仍然存在。糊精的进一步降解需要α(1→6)糖苷键的水解。 102、 肽聚糖(peptidoglycan):N-乙酰葡萄糖胺和N-乙酰唾液酸交替连接的杂多糖与不同组成的肽交叉连接形成的大分子。肽聚糖是许多细菌细胞壁的主要成分。 103、 糖蛋白(glycoprotein):含有共价连接的葡萄糖残基的蛋白质。 104、 蛋白聚糖(proteoglycans):由杂多糖与一个多肽链组成的杂化的大分子,多糖是分子的主要成分。

105、 脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂(例如三脂酰甘油、甘油磷脂、鞘磷脂和蜡)的成分。

106、 饱和脂肪酸(saturated fatty acid):不含有-C=C-双键的脂肪酸。 107、 不饱和脂肪酸(unsaturated fatty acid):至少含有一个-C=C-双键的脂肪酸。 108、 必需脂肪酸(ossential fatty acids):维持哺乳动物正常生长所需的,而动物又不能合成的脂肪酸,例如亚油酸和亚麻酸。 109、 三脂酰甘油(triacylglycerol):也称之甘油三酯(triglyceride)。一种含有

6

与甘油酯化的3个脂酰基的脂。脂肪和油是三脂酰甘油的混合物。 110、 磷脂(phospholipid):含有磷酸成分的脂。例如卵磷脂、脑磷脂等。 111、 鞘脂(sphingolipids):一类含有鞘氨醇骨架的两性脂,一端连接着一个长链的脂肪酸,了一端为一个极性的醇。鞘脂包括鞘磷脂、脑磷脂以及神经节苷脂,一般存在于植物和动物膜内,尤其是在中枢神经系统的组织内含量丰富。 112、 鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸胆碱(或磷酸乙醇胺)构成的鞘脂。鞘磷脂存在于大多数哺乳动物细胞的质膜内,是髓鞘的主要成分。

113、 卵磷脂(lecithin):就是磷脂酰胆碱(PC,phosphatidyl choline),是磷脂酸与胆碱形成的酯。

114、 脑磷脂(cephalin):就是磷脂酰乙醇胺(PE,phosphatidyl ethanolamine),是磷脂酸与乙醇胺形成的酯。 115、 脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 116、 生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着划分和分隔细胞和细胞器的作用。生物膜也是许多与能量转化和细胞内通讯有关的重要部位。 117、 内在膜蛋白(integral membrane proteins):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。

118、 外周膜蛋白(peripheral membrane proteins):通过与膜脂的极性头部或内在膜蛋白的离子相互作用和形成氢键与膜的内、外表面弱结合的膜蛋白。膜蛋白一旦从膜上释放出来,通常都是水溶性的。

119、 流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质\"镶\"在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另外脂和膜蛋白都可以进行横向扩散。

120、 通透系数(permeability coefficient):是离子或小分子扩散过脂双层膜能力的一种量度。

121、 通道蛋白(channel proteins):是一种带有中央水相通道的内在膜蛋白,它可以使大小合适的离子和分子从膜的任一方向穿过膜。 122、 (膜)孔蛋白(pore proteins):其含义与通道蛋白类似,只是该术语常用于细菌。

123、 被动转运(passive transport):也称之易化扩散(facilitated diffusion)。是一种转运方式,通过该方式溶质特异结合于一个转运蛋白,然后被转运过膜,但转运是沿着浓度梯度下降方向进行,所以被动转运不需要能量支持。

124、 主动转运(active transport):一种转运方式,通过该方式溶质特异结合于一个转运蛋白,然后被转运过膜,但与被动转运方式相反转运是逆着浓度梯度方向进行的,所以主动转运需要能量来驱动。在原发主动转运过程中,能源可以是光、ATP或电子传递。而第二级主动转运是在离子浓度梯度驱动下进行的。

125、 协同运送(cotransport):两种不同溶质跨膜的耦联转运。可以通过一个转运蛋白进行同一方向(同向转运)或反方向(反向转运)转运。 126、 胞吞(作用)(endocytosis):物质被质膜吞入并以膜衍生出的脂囊泡形式(物质在囊泡内)并被带入到细胞内的过程。 127、 胞吐(作用)(exocytosis):确定要分泌的物质被包裹在脂囊泡内,该囊泡与质膜融合,然后将物质释放到细胞外空间的过程。

128、 核苷(nucleoside):是由嘌呤或嘧啶碱基通过共价键与戊糖连接组成的化合物。

7

核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖苷键连接的。

129、 核苷酸(nucleotide):核苷的戊糖成分中的羟基磷酸化形成的化合物。

130、 cAMP(cyclic AMP):3ˊ,5ˊ-环腺苷酸,细胞内的第二信使,由于某些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。 131、 磷酸二酯键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键。 132、 脱氧核糖核酸(DNA , deoxyribonucleic acid):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是通过3ˊ,5ˊ-磷酸二酯键连接的。DNA是遗传信息的载体。

133、 核糖核酸(RNA , ribonucleic acid):通过3ˊ,5ˊ-磷酸二酯键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。

134、 核糖体核糖核酸(rRNA, ribosomal robonucleic acid):作为核糖体组成成分的一类RNA,rRNA是细胞内最丰富的RNA。

135、 信使核糖核酸(mRNA, messenger ribonucleic acid):一类用作蛋白质合成模板的RNA。

136、 转移核糖核酸(tRNA, transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上的RNA。tRNA含有能识别模板mRNA上互补密码的反密码。 137、 转化(作用)(transformation):一个外源DNA通过某种途径导入一个宿主菌,引起该细菌的遗传特性改变的作用。 138、 转导(作用)(transduction): 借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。

139、 碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U,以及G与C配对。

140、 查格夫法则(Chargaff's rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等,(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),即嘌呤的总含量与嘧啶的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外生长发育阶段、营养状态和环境的改变都不影响DNA的碱基组成。

141、 DNA双螺旋(DNA double helix):一种核酸的构象,在该构象中,两条反向平行的多核苷酸链围绕彼此缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二酯键相连,形成核酸的骨架。碱基平面与假想的中心轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核苷酸之间的夹角是36°,每对螺旋由10对碱基组成,碱基按A-T, G-C配对互补,彼此以氢键相连系。维持DNA双螺旋结构稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄、深浅不一的一个大沟和一个小沟。

142、 大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称之大沟,窄沟称之小沟。大沟、小沟都是由于碱基对堆积和糖-磷酸骨架扭转造成的。

143、 DNA超螺旋(DNA supercoiling):DNA本身的卷曲,一般是DNA双螺旋的弯曲、欠旋(负超螺旋)或过旋(正超螺旋)的结果。

144、 拓扑异构酶(topoisomerase):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶I通过切断DNA中的一条链

8

减少负超螺旋,增加一个连环数;而拓扑异构酶II切断DNA的两条链增加负超螺旋,减少2 个连环数。某些拓扑异构酶II也称之DNA促旋酶。 145、 核小体(nucleosome):用于包装染色质的结构单位,是由DNA链绕一个组蛋白核缠绕构成的。

146、 染色质(chromatin):是存在于真核生物间期细胞核内,易被碱性染料着色的一种无定形物质。染色质中含有作为骨架的完整的双链DNA,以及组蛋白、非组蛋白和少量的RNA。

147、 染色体(chromosome):是染色质在细胞分裂过程中经过紧密缠绕、折叠、凝缩和精细包装形成的具有固定形态的遗传物质存在形式。简言之,染色体是一个大的单一的双链DNA分子与相关蛋白质组成的复合物,DNA中含有许多基因,贮存和传递遗传信息。

148、 DNA变性(DNA denaturation):DNA双链解链分离成两条单链的现象。

149、 退火(annealing): 即DNA由单链复性变成双链结构的过程。来源相同的DNA单链经退火后完全恢复双链结构,同源DNA之间、DNA和RNA之间退火后形成杂交分子。

150、 融解温度(melting temperature, Tm):双链DNA融解彻底变成单链DNA的温度范围的中点温度。

151、 增色效应(hyperchromic effect):当双螺旋DNA融解(解链)时,260nm处紫外吸收增加的现象。

152、 减色效应(hypochromic effect):随着核酸复性,紫外吸收降低的现象。 153、 核酸内切酶(endonuclease):核糖核酸酶和脱氧核糖核酸酶中能够水解核酸分子内磷酸二酯键的酶。

154、 核酸外切酶(exonuclease):从核酸链的一端逐个水解下核苷酸的酶。 155、 限制性内切酶(restriction endonucleases):一种在特殊核苷酸序列处水解双链DNA的内切酶。I型限制性内切酶既催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而II型限制性内切酶只催化非甲基化的DNA的水解。

156、 限制酶图谱(restriction map):同一DNA用不同的限制酶进行切割从而获得各种限制酶的切割位点,由此建立的位点图谱有助于对DNA的结构进行分析。

157、 反向重复序列 (inverted repeat sequence):在同一多核苷酸链内的相反方向上存在的重复的核苷酸序列。在双链DNA中反向重复可能引起十字形结构的形成。 158、 重组DNA技术(recombination DNA technology):也称之基因工程(genomic engineering)。利用限制性内切酶和载体,按照预先设计的要求,将一种生物的某种目的基因和载体DNA重组后转人另一生物细胞中进行复制、转录和表达的技术。 159、 基因(gene):也称之顺反子(cistron)。泛指被转录的一个DNA片段。在某些情况下,基因常用来指编码一个功能蛋白或RNA分子的DNA片段。

160、 分解代谢反应(catabolic reaction):降解复杂分子为生物体提供小的构件分子和能量的代谢反应。

161、 合成代谢反应(anabolic reaction):合成用于细胞维持和生长所需要的分子的代谢反应。

162、 反馈抑制(feedback inhibition):催化一个代谢途径中前面反应的酶受到同一途径的终产物抑制的现象。

163、 前馈激活(feed-forward activation):代谢途径中一个酶被该途径中前面产生的代谢物激活的现象。

164、 标准自由能变化(ΔG°)(standard free-energy change): 在一系列标准条

9

件(温度:298K;压力:1个大气压;所有溶质的浓度都是1M)下发生的反应的自由能变化。ΔG°ˊ表示pH7.0条件下的标准自由能变化。

165、 标准还原电位(E°ˊ)(standard reduction potential):25℃和pH7.0条件下一个还原剂和它的氧化形式在1M浓度下表现出的电动势。

166、 酵解(glycolysis):一个由10步酶促反应组成的糖分解代谢途径,通过该途径,一分子葡萄糖转换为两分子丙酮酸,同时净生成两分子ATP和两分子NADH。 167、 发酵(fermentation):营养分子(例如葡萄糖)产能的厌氧降解,在乙醇发酵中,丙酮酸转化为乙醇和CO2。

168、 巴斯德效应(Pasteur effect):氧存在下,酵解速度放慢的现象。

169、 底物水平磷酸化(substrate phosphorylation):ADP或某些其它的核苷-5ˊ-二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子传递链无关。

170、 柠檬酸循环(citric acid cycle):也称之三羧酸循环(tricarboxylic acid cycle),Krebs 循环(Krebs cycle)。是用于乙酰CoA中的乙酰基氧化生成CO2的酶促反应的循环系统,该循环的第一步反应是由乙酰CoA和草酰乙酸缩合形成柠檬酸 171、 回补反应(anaplerotic reaction):酶催化的补充柠檬酸循环中间代谢物的供给的反应,例如由丙酮酸羧化生成草酰乙酸的反应。

172、 乙醛酸循环(glyoxylate cycle):是某些植物、细菌和酵母中柠檬酸循环的修改形式,通过该循环可以由乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤。

173、 戊糖磷酸途径(pentose phosphate pathway):也称之磷酸己糖支路(hexose monophosphate shunt)。是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子的NADPH;在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解中的两个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。

174、 糖醛酸途径(glucuronate pathway):从葡萄糖-6-磷酸或葡萄糖-1-磷酸开始,经UDP-葡萄糖醛酸生成葡萄糖醛酸和抗坏血酸的途径。但只有在植物和那些可以合成抗坏血酸(维生素C)动物体内,通过该途径可以合成维生素C。 175、 无效循环(futile cycle):也称之底物循环(substrate cycle)。一对催化两个途径的中间代谢物之间循环的方向相反、代谢上不可逆的反应。有时该循环通过ATP的水解导致热能的释放。例如,葡萄糖+ATP=葡萄糖-6-磷酸+ADP与葡萄糖-6-磷酸+H2O=葡萄糖+Pi反应组成的循环反应,其净反应实际上是ATP+H2O=ADP+Pi。 176、 磷酸解(作用)(phosphorolysis):在分子内通过引入一个无机磷酸形成磷酸酯键而使原来键断裂的方式。实际上引入了一个磷酰基。

177、 半乳糖血症(galactosemia):人类的一种基因型遗传代谢缺陷,特点是由于缺乏1-磷酸半乳糖尿苷酰转移酶导致婴儿不能代谢奶汁中乳糖分解生成的半乳糖。 178、 尾部生长(tailward growth):一种聚合反应机理,经过活化的单体的头部结到聚合物的尾部,连接到聚合物尾部的单体的尾部又成了接收下一个单体的受体。 179、 糖异生作用(gluconeogenesis):由简单的非糖前体转变为糖的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的7步近似平衡反应的逆反应,但还必须利用另外4步酵解中不曾出现的酶促反应绕过酵解中的三个不可逆反应。

180、 呼吸电子传递链(respiratory electron-transport chain):由一系列可作为电子载体的酶复合体和辅助因子构成,可将来自还原型辅酶或底物的电子传递给有氧

10

代谢的最终电子受体分子氧(O2)。

181、 氧化磷酸化(oxidative phosphorylation):电子从一个底物传递给分子氧的氧化与酶催化的由ADP和Pi生成ATP的磷酸化相偶联的过程。

182、 化学渗透理论(chemiosmotic theory):一种学说,主要论点是底物氧化期间建立的质子浓度梯度提供了驱动由ADP和Pi形成ATP的能量。

183、 解偶联剂(uncoupling agent):一种使电子传递与ADP磷酸化之间的紧密偶联关系解除的化合物,例如2,4-二硝基苯酚。

184、 P/O比(P/O ratio):在氧化磷酸化中,每1/2O2被还原时形成的ATP的摩尔数。电子从NADH传递给O2时,P/O比为3,而电子从FADH2传递给O2时,P/O比为2。 185、 高能化合物(high energy compound):在标准条件下水解时自由能大幅度减少的化合物。一般是指水解释放的能量能驱动ADP磷酸化合成ATP的化合物。 186、 叶绿体(chloroplast):藻类和植物中含有叶绿素进行光合作用的器官。 187、 叶绿素(chlorophyll):光合作用膜中的绿色色素,它是光合生物中主要的捕获光的成分。

188、 辅助色素(accessory pigments):在植物和光合细菌中象类胡萝卜素、叶黄素和藻胆(色)素那样吸收可见光的色素,这类色素是对叶绿素捕获光能的补充。 189、 光合作用(photosynthesis):绿色植物或光合细菌利用光能将CO2转化成有机化合物的过程。

190、 光合磷酸化(photophosphorylation):在叶绿体ATP合成酶催化下依赖于光的由ADP和Pi合成ATP的过程。

191、 光反应(light reactions):光合色素将光能转变成化学能并形成ATP和NADPH的过程。

192、 暗反应(dark reactions):利用光反应生成的ATP和NADPH的化学能使CO2还原成糖或其它有机物的一系列酶促过程。

193、 β氧化途径(βoxidation pathway):是脂肪酸氧化分解的主要途径,脂肪酸被连续地在β碳氧化降解生成乙酰CoA,同时生成NADH和FADH2,因此可产生大量的ATP。该途径因脱氢和裂解均发生在β位碳原子而得名。每一轮脂肪酸β氧化都是由4步反应组成:氧化、水化、再氧化和硫解。

194、 肉毒碱穿梭系统(carnitine shuttle system):脂酰CoA通过形成脂酰肉毒碱从细胞质转运到线粒体的一个穿梭循环途径。

195、 酮体(acetone body):在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸、乙酰乙酸和丙酮)。在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多将导致中毒。

196、 柠檬酸转运系统(citrate transport system):将乙酰CoA从线粒体转运到细胞质的穿梭循环途径。在转运乙酰CoA的同时,细胞质中的NADH氧化成NAD+、NADP+还原为NADPH。每循环一次消耗2分子ATP。 197、 酰基载体蛋白(ACP, acyl carrier protein):通过硫酯键结合脂肪酸合成的中间代谢物的蛋白质(原核生物)或蛋白质的结构域(真核生物)。 198、 生物固氮作用(Biological nitrogen fixation):大气中的氮被还原为氨的过程。生物固氮只发生在少数的细菌和藻类中。

199、 尿素循环(urea cycle):是一个由4步酶促反应组成的可以将来自氨和天冬氨酸的氮转化为尿素的代谢循环。该循环是发生在脊椎动物肝脏中的一个代谢循环。 200、 脱氨(deamination):在酶的催化下从生物分子(氨基酸或核苷酸分子)中除去氨基的过程。

11

201、 氧化脱氨(oxidative deamination):α-氨基酸在酶的催化下脱氨生成相应α-酮酸的过程。氧化脱氨过程实际上包括脱氢和水解两个步骤。 202、 转氨酶(transaminases):也称之氨基转移酶(aminotransferases)。催化一个α-氨基酸的α-氨基向一个α-酮酸转移的酶。

203、 转氨(transamination):一个α-氨基酸的α-氨基借助转氨酶的催化作用转移到一个α-酮酸的过程。

204、 乒乓反应(ping-pong reaction):在该反应中,酶结合一个底物并释放出一个产物,留下一个取代酶,然后该取代酶再结合第二个底物和释放出第二个产物,最后酶恢复到它的起始状态。 205、 生糖氨基酸(glucogenic amino acids):那些降解能生成可作为糖异生前体分子,例如丙酮酸或柠檬酸循环中间代谢物的氨基酸。

206、 生酮氨基酸(acetonegenic amino acid):那些降解可生成乙酰CoA或酮体的氨基酸。

207、 苯酮尿症(phenylketonuria):是由于苯丙氨酸羟化酶缺乏引起苯丙酮酸堆积的代谢遗传病。缺乏苯丙氨酸羟化酶,苯丙氨酸只能靠转氨生成苯丙酮酸,病人尿中排出大量苯丙酮酸。苯丙酮酸堆积对神经有毒害,智力发育出现障碍。

208、 尿黑酸症(alcaptonuria):是酪氨酸代谢中缺乏尿黑酸氧化酶引起的代谢遗传病。这种病人尿中含有尿黑酸,在碱性条件下暴露于氧气氧化并聚合为类似于黑色素的物质,从而使尿成黑色。 209、 核苷磷酸化酶(nucleoside phosphorylase):能分解核苷生成含氮碱和戊糖的磷酸酯的酶。

210、 核苷水解酶(nucleoside hydrolase):能分解核苷生成含氮碱和戊糖的酶。 211、 从头合成(de novo synthesis ):生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。

212、 补救途径(salvage pathway):与从头合成途径不同,生物分子的合成,例如核苷酸可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。

213、 痛风(gout):是尿酸过量生产或尿酸排泄不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨、软组织、肾脏以及关节处。在关节处的沉积会造成剧烈的疼痛。 214、 别嘌呤醇(allopurinol):是结构上(嘌呤环上第7位是C,第8位是N)类似于次黄嘌呤的化合物,对黄嘌呤氧化酶有很强抑制作用,常用来治疗痛风。 215、 自杀抑制作用(suicide substrate):底物类似物经酶催化生成的产物变成了该酶的抑制剂。例如别嘌呤醇对黄嘌呤氧化酶的抑制就属于这种抑制类型。 216、 Lesch-Nyhan综合症(Lesch-Nyhan ):也称之自毁容貌症,是由于次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷引起的。缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为IMP和GMP,而是降解为尿酸,过量尿酸将导致Lesch-Nyhan综合症。 217、 激素(hormone):一类由内分泌组织合成的微量的化学物质,它由血液运输到靶组织,起着一个信使的作用调节靶组织(器官)的功能。 218、 激素受体(hormone receptor):位于细胞表面或细胞内结合特异激素并引发细胞响应的蛋白质。

219、 第二信使(second messenger):响应外部信号(第一信使),例如激素而在细胞内合成的效应分子,例如cAMP、肌醇三磷酸或二酰基甘油等。第二信使再去调节靶酶,引起细胞内各种效应。

220、 级联放大(cascade):在体内的不同部位,通过一系列的酶促反应来传递一个信

12

息,并且初始信息在传到系列反应的最后时,信号得到放大,这样的一个系列叫做级联系统。最普通的类型是蛋白水解和蛋白质磷酸化的级联放大。 221、 G蛋白(G proteins):在细胞内信号传导途径中起着重要作用的GTP结合蛋白质,由α、β、γ三个不同亚基组成。与激素受体结合的配体诱导GTP与G蛋白结合的GDP进行交换,结果激活位于信号传导途径中下游的腺苷酸环化酶。G蛋白将胞外的第一信使肾上腺素等激素和胞内的腺苷酸环化酶催化的腺苷酸环化生成的第二信使cAMP联系起来。G蛋白具有内源GTP酶活性。

222、 激素效应元件(hormone response elements, HRE):是指类固醇、甲状腺素等激素受体结合的一段短的DNA序列(12~20bp),这类受体结合DNA后可改变相邻基因的表达。

223、 半保留复制(semiconservative replication):DNA复制的一种方式。每条链都可用作合成互补链的模板,合成出两分子的双链DNA,每个分子都是由一条亲代链和一条新合成的链组成。

224、 复制叉(replication forks):Y字型结构,在复制叉处作为模板的双链DNA解旋,同时合成新的DNA链。

225、 DNA聚合酶(DNA polymerase):以 DNA为模板催化核苷酸残基加到已存在的聚核苷酸的3ˊ末端反应的酶。某些DNA聚合酶具有外切核酸酶的活性,可用来校正新合成的核苷酸序列。

226、 Klenow 片段(Klenow fragment):E.coli DNA聚合酶I经部分水解生成的C末端605个氨基酸残基片段。该片段保留了DNA聚合酶I 的5ˊ-3ˊ聚合酶和3ˊ-5ˊ外切酶活性,但缺少完整酶的5ˊ-3ˊ外切酶活性。 227、 前导链(leading strand):与复制叉移动的方向一致,通过连续地5ˊ→3ˊ聚合合成的新的DNA链。

228、 滞后链(lagging strand):与复制叉移动的方向相反,通过不连续地5ˊ→3ˊ聚合合成的新的DNA链。 229、 冈崎片段(Okazaki fragments): 相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段,这是Reiji Okazaki 在DNA合成实验中添加放射性的脱氧核苷酸前体观察到的。

230、 引发体(primosome):一种多蛋白复合体,E.coli中的引发体包括催化滞后链不连续DNA合成所需要的短的RNA引物合成的引发酶、解旋酶。

231、 复制体(replisome):一种多蛋白复合体,包含DNA聚合酶、引发酶、解旋酶、单链结合蛋白和其它辅助因子。复制体位于每个复制叉处执行着细菌染色体DNA复制的聚合反应。

232、 单链结合蛋白(SSB,single-strand binding protein):一种与单链DNA结合紧密的蛋白质,它的结合可以防止复制叉处的单链DNA本身重新折叠回双链区。 233、 滚环复制(rolling-circle replication):复制环状DNA的一种模式,在该模式中,DNA聚合酶结合在一个缺口链的3ˊ端,绕环合成与模板链互补的DNA,每一轮都是新合成的DNA取代前一轮合成的DNA。 234、 逆转录酶(reverse transcriptase):一种催化以RNA为模板合成DNA的DNA聚合酶,具有RNA指导的DNA合成、水解RNA和DNA指导的DNA合成的酶活性。

235、 互补DNA (cDNA , complementary DNA):通过逆转录酶由mRNA模板合成的双链DNA。

236、 聚合酶链式反应(PCR, polymerase chain reaction):扩增样品中的DNA量和富集众多DNA分子中的一个特定DNA序列的一种技术。在该反应中,使用与目的DNA

13

序列互补的寡核苷酸作为引物,进行多轮的DNA合成。其中包括DNA变性、引物退火和在Taq DNA聚合酶催化下的DNA合成。

237、 直接修复(direct repair):是通过一种可连续扫描DNA,识别出损伤部位的蛋白质将损伤部位直接修复的方法。该修复方法不用切断DNA或切除碱基。

238、 切除修复(excision repair):通过切除-修复内切酶使DNA损伤消除的修复方法。一般是切去损伤区,然后在DNA聚合酶的作用下以露出的单链为模板合成新的互补链,最后用连接酶将缺口连接起来。 239、 错配修复(mismatch repair):在含有错配碱基的DNA分子中使正常核苷酸序列恢复的修复方式。这种修复方式的特点是:识别出正确的链,切除掉不正确链的部分,然后通过DNA聚合酶和DNA连接酶的作用合成正确配对的双链DNA。

240、 遗传学中心法则(genetic central dogma):描述从一个基因到相应蛋白质的信息流的途径。遗传信息贮存在DNA中,DNA被复制传给子代细胞,信息被拷贝或由DNA被转录成RNA,然后RNA被翻译成多肽链。不过由于逆转录酶的发现,也可以以RNA为模板合成DNA。 241、 转录(transcription):在由RNA聚合酶和辅助因子组成的转录复合体的催化下,从双链DNA分子中拷贝生物信息生成单一一条RNA链的过程。 242、 模板链(template strand):可作为模板转录为RNA的那条链,该链与转录的RNA碱基互补(A-U, G-C)。在转录过程中,RNA聚合酶与模板链结合,并沿着模板链的3ˊ→5ˊ方向移动,按照5ˊ→3ˊ方向催化RNA的合成。 243、 编码链(coding strand):双链DNA中,不能进行转录的那条DNA链,该链的核苷酸序列与转录生成的RNA的序列一致(在RNA中是以U取代了DNA中的T)。

244、 核心酶(core enzyme):大肠杆菌的RNA聚合酶全酶由五个亚基(α2ββ'δ)组成,没有δ亚基的酶叫核心酶。核心酶只能使已开始合成的RNA链延长,但不具有起始合成RNA的能力,必需加入δ亚基才表现出全部聚合酶的活性。

245、 RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5ˊ-三磷酸合成RNA的酶。

246、 启动子(promoter):DNA分子中RNA聚合酶能够结合并导致转录起始的序列。 247、 内含子(introns):在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列。术语内含子也指编码相应RNA内含子的DNA中的区域。 248、 外显子(exons):既存在于最初的转录产物中,也存在于成熟的RNA分子中的核苷酸序列。术语外显子也指编码相应RNA外显子的DNA中的区域。 249、 终止因子(termination factors):协助RNA 聚合酶识别终止信号的辅助因子(蛋白质)。

250、 核酶(ribozymes):具有象酶那样催化功能的RNA分子。

251、 剪接体(spliceosome):大的蛋白质-RNA复合体,它催化内含子从mRNA前体中除去的反应。

252、 RNA加工过程(RNA processing):将一个RNA原初转录产物转换成成熟RNA分子的反应过程。加工包括从原初转录产物中删除一些核苷酸,添加一些基因没有编码的核苷酸,和对某些碱基进行共价修饰。 253、 RNA剪接(RNA splicing):从DNA模板链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA分子的过程。 254、 翻译(translation):在蛋白质合成期间将存在于mRNA上代表一个多肽链的核苷酸残基序列转换为多肽链氨基酸残基序列的过程。

255、 遗传密码(genetic code):核酸中的核苷酸残基序列与蛋白质中的氨基酸残基

14

序列之间的对应关系。连续的3个核苷酸残基序列为一个密码,特指一个氨基酸。标准的遗传密码是由64个密码组成的,几乎为所有生物通用。 256、 起始密码(iniation codon):指定蛋白质合成起始位点的密码。最常见的起始密码是蛋氨酸密码:AUG。

257、 终止密码(termination codon):任何tRNA分子都不能正常识别的、但可被特殊蛋白结合并引起新合成的肽链从翻译机器上释放的密码。存在三个终止密码:UAG,UAA和UGA。

258、 密码子(codon):mRNA(或DNA)上的三联体核苷酸残基序列,该序列编码着一个指定的氨基酸,tRNA的反密码子与mRNA的密码子互补。

259、 反密码子(anticodon): tRNA分子的反密码环上的三联体核苷酸残基序列。在翻译期间,反密码与mRNA中的互补密码结合。

260、 兼并密码子(degenerate codon):也称之同义密码子(synonymous codon)。是指编码相同氨基酸的几个不同的密码子。

261、 氨基酸臂(amino arm):也称之接纳茎(acceptor stem)。tRNA分子中靠近3ˊ端的核苷酸序列和5ˊ端的序列碱基配对,形成的可接收氨基酸的臂(茎)。 262、 TψC臂(TψC arm):tRNA中含有胸腺嘧啶核苷酸-假尿嘧啶核苷酸-胞嘧啶核苷酸残基序列的茎环结构。

263、 氨酰-tRNA(aminoacyl-tRNA):在氨基酸臂的3ˊ端的腺苷酸残基共价连接了氨基酸的tRNA分子。

264、 同工tRNA(isoacceptor tRNA):结合相同氨基酸的不同的tRNA分子。 265、 摆动(wobble) :处于密码子3ˊ端的碱基和与之互补的反密码的5ˊ端的碱基之间的碱基配对有一定的宽容性,即处于反密码的5ˊ端的碱基(也称之摆动位置),例如I可以与密码子上3ˊ端的U、C和A配对。由于存在摆动现象所以使得一个tRNA反密码子可以和一个以上的mRNA密码子结合。

266、 氨酰-tRNA合成酶(aminoacyl-tRNA synthetase):催化特定氨基酸激活并共价结合在相应的tRNA分子3ˊ端的酶。 267、 翻译起始复合体(translation initiation complex):由核糖体亚基、一个mRNA模板、一个起始的tRNA分子和起始因子组成并组装在蛋白质合成起始点的复合体。 268、 读码框( reading frame):代表一个氨基酸序列的mRNA分子的非重叠密码序列。一个mRNA的读码框是由转录起始位置(通常是AUG密码)确定的。 269、 SD序列(Shine-Dalgarno sequence):mRNA中用于结合原核生物核糖体的序列。 270、 肽酰转移酶(peptidyl transferase):蛋白质合成期间负责转移肽酰基和催化肽键形成的酶。

271、 嘌呤霉素(puromycin):通过整合到生长着的肽链,引起肽链合成提前终止来抑制多肽链合成的一种抗生素。

272、 开放读码框(open reading frame):DNA 或RNA序列中一段不含终止密码的连续的非重叠核苷酸密码。

273、 信号肽(signal peptide):常指新合成多肽链中用于指导蛋白质跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N端)。 274、 转录因子(transcription factor):在转录起始复合体的组装过程中,与启动子区结合并与RNA聚合酶相互作用的一种蛋白质。某些转录因子在RNA延伸时一直维持着结合状态。

275、 操纵子(operons):是由一个或多个相关基因以及调控它们转录的操纵基因和启动子序列组成的基因表达单位。

15

276、 操纵基因(operator):与特定阻遏蛋白相互作用调控一个基因或一组基因表达的DNA区。

277、 结构基因(structural gene):编码一个蛋白质或一个RNA的基因。 278、 转录激活剂(transcriptional activator):通过增加RNA聚合酶的活性来加快转录速度的一种调节DNA结合蛋白。 279、 阻遏物(repressor):与一个基因的调控序列或操纵基因结合以阻止该基因转录的一类蛋白质。

280、 衰减作用(attenuation):一种翻译调控机制。在该机制中,核糖体沿着mRNA分子的移动的速率决定转录是进行还是终止。

281、 亮氨酸拉链(leucine zipper):出现在DNA结合蛋白质和其它蛋白质中的一种结构基元(motif)。当来自同一个或不同多肽链的两个两性的α-螺旋的疏水面(常常含有亮氨酸残基)相互作用形成一个圈对圈的二聚体结构时就形成了亮氨酸拉链。 282、 锌指(zinc finger):也是一种常出现在DNA结合蛋白质中的一种结构基元。是由一个含有大约30个氨基酸残基的环和一个与环上的4个Cys或2个Cys和2个His配位的Zn2+构成,形成的结构象个手指状。

第二部分各章节习题及答案

蛋白质和氨基酸的一级结构

1、氨基酸的侧链对多肽或蛋白质的结构和生物学功能非常重要。用三字母和单字母缩写形式列出其侧链为如下要求的氨基酸: (a)含有一个羟基。 (b)含有一个氨基。

(c)含有一个具有芳香族性质的基团。 (d)含有分支的脂肪族烃链。 (e)含有硫。

(f)含有一个在pH 7-10范围内可作为亲核体的基团或原子,指出该亲核基团或原子。

答:(a)Ser(S), Thr(T),Tyr(Y) (b)Asn(N), Gln(Q),Arg(R),Lys(K) (c)Phe(F), Trp(W), Tyr(Y), (d)Ile(I), Leu(L), Val(V) (e)Cys(C), Met(M)

(f)可以作为亲核试剂的侧链基团或原子有位于Ser(S),Thr(T)和Tyr(Y)中的-OH;位于Cys(C)和Met(M)中的硫原子,位于Asp(D)和Glu(E)中的-COO-;以及位于His(H)和Lys(k)中的氮原子。 2、一种氨基酸的可解离基团可以带电或中性状态存在,这取决于它的pK值和溶液的pH。 (a)组氨酸有3种可解离基团,写出相应于每个pK 值的3种解离状态的平衡方程式。每种解离状态下的组氨酸分子的净电荷是多少?

(b)在pH1、4、8和12时,组氨酸的净电荷分别是多少?将每一pH下的组氨酸置于电场中,它们将向阴极还是阳极迁移? 答: (a)、(b) 见图

3、某种溶液中含有三种三肽:Tyr - Arg - Ser , Glu - Met - Phe 和Asp - Pro - Lys , α- COOH基团的pKa 为3.8; α-NH3基团的pKa为8.5。在哪种pH(2.0,6.0或13.0)下,通过电泳分离这三种多肽的效果最好?

16

答:pH=6.0比pH=2.0或pH=13.0时电泳能提供更好的分辨率。因为在pH=6.0的条件下每种肽都带有不同的净电荷(+1,-1,和0),而在pH=2.0的条件下净电荷分别为+2,+1和+2,在pH=13.0的条件下净电荷分别为-2,-2和-2。

4、利用阳离子交换层析分离下列每一对氨基酸,哪一种氨基酸首先被pH7缓冲液从离子交换柱上洗脱出来。(a)Asp和Lys(b)Arg和Met(c)Glu和Val(d)Gly和Leu(e)Ser和Ala 答:(a)Asp(b)Met(c)Glu(d)Gly(e)Ser

5、氨基酸的定量分析表明牛血清白蛋白含有0.58%的色氨酸(色氨酸的分子量为204)。 (a)试计算牛血清白蛋白的最小分子量(假设每个蛋白分子只含有一个色氨酸残基)。 (b)凝胶过滤测得的牛血清白蛋白的分子量为70,000,试问血清白蛋白分子含有几个色氨酸残基? 答:(a)32,100g/mol(b)2

6、胃液(pH=1.5)的胃蛋白酶的等电点约为1,远比其它蛋白质低。试问等电点如此低的胃蛋白酶必须存在有大量的什么样的官能团?什么样的氨基酸才能提供这样的基团?

答:-COO-; Asp, Glu

7、已知某蛋白是由一定数量的链内二硫键连接的两个多肽链组成的。1.00g该蛋白样品可以与25.0mg还原型谷胱甘肽(GSH,MW=307)反应。 (a)该蛋白的最小分子量是多少?

(b)如果该蛋白的真实分子量为98240,那么每分子中含有几个二硫键? (c)多少mg的巯基乙醇(MW=78.0)可以与起始的1.00g该蛋白完全反应? 答:(a)MW=24560;(b)4个二硫键;(c)6.35mg

8、一个含有13个氨基酸残基的十三肽的氨基酸组成为:Ala, Arg,2 Asp, 2Glu, 3Gly, Leu, 3Val。部分酸水解后得到以下肽段,其序列由Edman降解确定,试推断原始寡肽的序列。

(a)Asp - Glu - Val - Gly - Gly - Glu - Ala (b)Val - Asp - Val - Asp - Glu (c)Val - Asp - Val

(d)Glu - Ala -Leu - Gly -Arg

(e)Val - Gly - Gly - Glu - Ala - Leu (f)Leu - Gly – Arg

答:该肽链的序列可以通过将肽片段的相同序列重叠排列起来获得整个序列。见图 9、下列试剂和酶常用于蛋白质化学的研究中: CNBr 异硫氰酸苯酯 丹黄酰氯 脲 6mol/LHCl β-巯基乙醇 水合茚三酮 过甲酸 胰蛋白酶 胰凝乳蛋白酶,其中哪一个最适合完成以下各项任务? (a)测定小肽的氨基酸序列。 (b)鉴定肽的氨基末端残基。

(c)不含二硫键的蛋白质的可逆变性。若有二硫键存在时还需加什么试剂? (d)在芳香族氨基酸残基羧基侧水解肽键。 (e)在蛋氨酸残基羧基侧水解肽键。 (f)在赖氨酸和精氨酸残基侧水解肽键。 答:(a)异硫氰酸苯酯。(b)丹黄酰氯。(c)脲;β-巯基乙醇还原二硫键。(d)胰

凝乳蛋白酶。(e)CNBr。 (f)胰蛋白酶 10、由下列信息求八肽的序列。

(a)酸水解得 Ala,Arg,Leu,Met,Phe,Thr,2Val (b)Sanger试剂处理得DNP-Ala。

17

(c)胰蛋白酶处理得Ala,Arg,Thr 和 Leu,Met,Phe,2Val。当以Sanger试剂处理时分别得到DNP-Ala和DNP-Val。 (d)溴化氰处理得 Ala,Arg,高丝氨酸内酯,Thr,2Val,和 Leu,Phe,当用Sanger试剂处理时,分别得DNP-Ala和DNP-Leu。 答:Ala-Thr-Arg-Val-Val-Met-Leu-Phe

蛋白质的三维结构和功能

1、在结晶肽的X-射线研究中,Linus Pauling和Robert corey发现肽链中的肽键(C-N)长度(1.32A)介于典型的C-N单键(1.49A)和C=N双键(1.27A)之间。他们也发现肽键呈平面状(与肽键相连接的4个原子位于同一个平面)以及两个碳原子彼此呈反式(位于肽键的两侧)与肽键连接。

(a)肽键的长度与它的键的强度和键级(是单键、双键或三键)有什么关系? (b)从Pauling等人的观察,就肽键旋转能得出什么看法? 答:(a)键越短其强度越高,而且其键级越高(在单键以上)。肽键的强度比单键强,键的特性介于单键和双键之间。(b)在生理温度下,肽键旋转比较困难,因为它有部分双键特性。 2、羊毛衫等羊毛制品在热水中洗后在电干燥器内干燥,则收缩。但丝制品进行同样处理,却不收缩。如何解释这两种现象?

答: 羊毛纤维多肽链的主要结构单位是连续的α-螺旋圈,其螺距为5.4A。当处于热水(或蒸汽)环境下,使纤维伸展为具有β-折叠构象的多肽链。在β-折叠构象中相邻R基团之间的距离是7.0A。当干燥后,多肽链重新由β折叠转化为α螺旋构象,所以羊毛收缩了。而丝制品中的主要成分是丝心蛋白,它主要是由呈现β折叠构象的多肽链组成的,丝中的β-折叠含有一些小的、包装紧密的氨基酸侧链,所以比羊毛中的α-螺旋更稳定,水洗和干燥其构象基本不变。

3、人的头发每年以15至20cm的速度生长,头发主要是α角蛋白纤维,是在表皮细胞的里面合成和组装成\"绳子\"。 α角蛋白的基本结构单元是α-螺旋。如果α-螺旋的生物合成是头发生长的限速因素,计算α-螺旋链的肽键以什么样的速度(每秒钟)合成才能解释头发每年的生长长度? 答:每秒钟大约需合成43个肽键。(要考虑到α-螺旋的每一圈含有3.6个氨基酸残基,螺距为0.54nm)。

4、合成的多肽多聚谷氨酸((Glu)n ),当处在pH3.0以下时,在水溶液中形成α螺旋,而在pH5.0以上时却为伸展的形态。 (a)试解释该现象。

(b)在哪种PH条件下多聚赖氨酸(Lys)会形成α-螺旋? 答:(a)由可离子化侧链的氨基酸残基构成的α-螺旋对pH值的变化非常敏感,因为溶液的pH值决定了侧链是否带有电荷,由单一一种氨基酸构成的聚合物只有当侧链不带电荷时才能形成α-螺旋,相邻残基的侧链上带有同种电荷会产生静电排斥力从而阻止多肽链堆积成α-螺旋构象。Glu侧链的pKa约为4.1,当pH值远远低于4.1(大约3左右)时,几乎所有的多聚谷氨酸侧链为不带电荷的状态,多肽链能够形成α-螺旋。在pH值为5或更高时,几乎所有的侧链都带负电荷,邻近电荷之间的静电排斥力阻止螺旋的形成,因此使同聚物呈现出一种伸展的构象。

(b)Lys侧链的pK为10.5,当pH值远远高于10.5时,多聚赖氨酸大多数侧链为不带电荷的状态,该多肽可能形成一种α-螺旋构象,在较低的pH值时带有许多正电荷的分子可能会呈现出一种伸展的构象。

5、一个α-螺旋片段含有180个氨基酸残基,该片段中有多少圈螺旋?计算该α-螺旋片段的轴长。

答:该片段中含有50圈螺旋,其轴长为27nm。

18

6、如何用二氧化碳与水的反应来解释Bohr效应?

(a)写出由二氧化碳和水形成碳酸氢根的方程式,并解释H+和CO2在血红蛋白氧合中的作用。

(b)解释向休克病人静脉注射碳酸氢根的生理学依据。

答:二氧化碳与水的反应说明了为什么当CO2的浓度增加时,同时会引起pH值下降,迅速进行新陈代谢的组织所产生的CO2(a)该反应生成的H+降低了血液的pH值,从而稳定了血红蛋白的脱氧形式(T构象),净结果是P50的增加,即血红蛋白对氧的亲和力降低,于是更多的氧气被释放到组织中。CO2也可以通过与四条链的N端形成氨甲酸加合物降低血红蛋白对氧气的亲和力、该加合物使脱氧构象(T)保持稳定,因而进一步增加了P50,并且促进了氧气向组织中的释放。

(b)休克病人组织中严重缺乏氧气供应,碳酸盐静脉给药为组织提供了一种CO2的来源,通过降低血红蛋白对氧气的亲和力,CO2促使氧合血红蛋白向组织中释放氧气 7、一个寡聚蛋白(MW=72000)是由相同亚基组成的,该蛋白可以完全解离并与2,4-二硝基氟苯反应。由100mg该蛋白可以获得5.56μM的DNP-Gly,该蛋白含有几个亚基? 答:4个亚基。 8、对怀孕的哺乳动物中氧的转运研究显示在同样条件下测量婴儿和母亲的血液氧饱和曲线明显不同。这是因为婴儿的红细胞中含有结构不同的血红蛋白F(a2g2),而母亲的红细胞含有一般的血红蛋白A(a2g2)。

(a)在生理状况下,哪一种血红蛋白对氧有更高的亲和性。请解释。

(b)不同的氧亲和性有何生理意义?)当所有的2,3-二磷酸甘油酸(BPG)从血红蛋白A和F中移去后,测得的氧饱和曲线往左移。不过此时的血红蛋白A比血红蛋白F对氧有更高的亲和性。当加回 BPG时,氧饱和曲线又恢愎正常情形。 BPG对血红蛋白的氧亲和性有何影响?用以上资料解释婴儿和母亲的血红蛋白的不同氧亲和性? 答:(a)当氧分压为4kPa时,HbA只有33%的氧饱和度,而HbF为58%,表明HbF比HbA对氧的亲和性更高。

(b)HbF对氧的高亲和性可确保氧可以由母体血液流向胎盘中的胎儿血液。

(c)当结合BPG时,与HbF相比,HbA氧饱和曲线发生了更大的漂移,表明HbA结合BPG比HbF结合BPG更紧密,而结合BPG就减少了对氧亲和性。 9、下列变化对肌红蛋白和血红蛋白的氧亲和性有什么影响? (a)血液中的pH由7.4下降到7.2。

(b)肺部CO2分压由6kPa(屏息)减少到2kPa(正常)。 (c)BPG水平由5mM(平原)增加到8mM(高原)。 答:对肌红蛋白氧亲和性的影响: (a)没有影响 (b)没有影响 (c)没有影响

对血红蛋白氧亲和性的影响:(a)降低 (b)增加 (c)降低

10、蛋白质A对配体X结合的解离常数为Kd=10-6M,而蛋白质B对X结合的Kd=10-9M。哪个蛋白对X有更高的亲和性? 答:蛋白质B对X有更高的亲和性。蛋白质B对CX的半饱和浓度比蛋白质A的低得多。 酶 1、称取25mg蛋白酶粉配制成25毫升酶溶液,从中取出0.1毫升酶液,以酪蛋白为底物,用Folin-酚比色法测定酶活力,得知每小时产生1500微克酪氨酸。另取2毫升酶液,用凯氏定氮法测得蛋白氮为0.2毫克(蛋白质中氮的含量比较固定:16%)。若以每分钟产生l微克酪氨酸的酶量为1个活力单位计算。根据以上数据求:(a)1毫升酶液中

19

所含蛋白质量及活力单位。(b)比活力。(c)1克酶制剂的总蛋白含量及总活力。 答:(a)0.625mg,250单位 (b)400单位/mg (c)0.625g, 2.5×105单位

2、从肝细胞中提取的一种蛋白水解酶的粗提液300ml含有150mg蛋白质,总活力为360单位。经过一系列纯化步骤以后得到的4ml酶制品(含有0.08mg蛋白),总活力为288单位。整个纯化过程的收率是多少?纯化了多少倍? 答: 80%;1500倍。。

3、1/v对1/[S]的双倒数作图得到的直线斜率为1.2×10-3min,在1/v轴上的截距为2.0×10-2nmol-1ml min。计算Vmax和Km。

答:Vmax=50 nmol ml-1 min-1;Km=6.0×10-2 nmolml-1 4、一个二肽酶对二肽Ala-Gly和二肽Leu-Gly的Km分别为2.8×10-4和3.5×10-2,哪一个二肽是酶的最适底物?该酶的两个非竞争性抑制剂的Ki值分别为5.7×10-2和2.6×10-4。哪一个是最强的抑制剂?

答:Ala-Gly是最适底物;Ki值最小的那个是最强的抑制剂。

5、根据米式方程求(a)Kcat为30s-1,Km为0.005M的酶,在底物浓度为多少时,酶促反应的速度为1/4 Vmax?(b)底物浓度为1/2Km,2 Km和10 Km时,酶促反应的速率分别相当于多少Vmax? 答:(a)1.7×10-3M(b)0.33; 0.66; 0.91

6、延胡索酸酶催化延胡索酸水化生成L-苹果酸:见图

该酶由四个相同的亚基组成,分子量为194,000。下面表格中的数据是延胡索酸作为底物,初始水化速率是在pH5.7,25℃下,酶浓度2×10-6M时得到的。用双倒数作图求出延胡索酸酶在这些条件下的Vmax,kcat和Km。 见图

答:首先要分别计算出底物浓度和产物生成初始速度的倒数(注意在计算和绘图过程中选取合适的数值及单位),然后作图。1/Vmax=0.20mmol- L min 所以Vmax=5.0mmol L-1min-1 -1/Km=-0.5mM-1 Km=2.0mM或2.0×10-3M kcat可以通过用Vmax除以[E]total而得到,[E]total为酶活性中心的浓度。因为延胡索酸酶由4个相同的亚基构成,即每一个四聚体的酶分子有四个活性部位,浓度为2×10-6M的延胡索酸酶可以表示为8×10-6M浓度的活性部位,或8×10-3mmol.L-1。kcat的单位为S-1。 7、红细胞中的碳酸酐酶(Mr30000),具有很高的转换数。它催化CO2的可逆水合反应。 H2O十CO2==H2CO3 此反应对CO2从组织运往肺部很重要。如果10mg的纯碳酸酐酶,37℃下一分钟内以最大速度可催化0.3g CO2的水合反应。碳酸酐酶的转换数(Kcat)是多少?。 答:2.0×107min-1或3.4×105s-1

8、许多酶会受到重金属离子,如Hg2+、Cu2+、Ag+等的不可逆抑制。这类重金属与酶中的活性巯基作用而使酶失活。 E-SH+Ag+→E-S-Ag++H+Ag+

与巯基的亲和性如此之大,以至于Ag+可以用于-SH的定量滴定。欲使含有1.0mg/ml纯酶的10ml酶液完全失活,需加入0.342mmol的AgNO3。计算此酶的最小分子量。为什么能用此法计算酶的最小分子量?

答:29,000; 需要假定每一个酶分子只含有一个可滴定的巯基。

9、酶溶液加热时,随着时间的推移,酶的催化活性逐渐丧失。这是由于加热导致天然酶的构象去折叠。己糖激酶溶液维持在45℃12分钟后,活性丧失百分之五十。但是若己糖激酶与大量的底物葡萄糖共同维持在 45℃12分钟,则活性丧失仅为3%。请解释,为什么在有底物存在下,己糖激酶的热变性会受到抑制? 答:酶-底物复合物比单独的酶更稳定。

10、新掰下的玉米的甜味是由于玉米粒中的糖浓度高。可是掰下的玉米贮存几天后就不那么甜了,因为50%糖已经转化为淀粉了。如果将新鲜玉米去掉外皮后浸入沸水几分钟,然后于冷水中冷却,储存在冰箱中可保持其甜味。这是什么道理?

20

答:采下的玉米在沸水中浸泡数分钟,可以使其中将糖转化成淀粉的酶基本失活,而后将玉米存放在冰箱中,可以使残存的酶处于一种低活性状态,从而保持了玉米的甜度。

辅 酶

1、确定下列各种辅酶,并指出它们是由哪种维生素衍生来的。

(a)在使一个酮(例如丙酮酸)还原成次级醇(例如乳酸)反应中用的辅酶。 (b)在使初级醇(例如乙醇)氧化为醛(例如乙醛)反应中用的辅酶。

(c)在依赖ATP的羧化(例如丙酮酸羧化生成草酰乙酸)反应中用的辅基。 (d)在脱羧和转醛基(例如丙酮酸脱羧形成乙醛)反应中用的辅基。 (e)在转甲酰基或甲叉基(羟甲基)反应中用的辅酶。 (f)在转乙酰基或更长的脂酰基反应中用的辅酶。

(g)在从氨基酸的α碳上去除或取代基团的反应中用的辅基。

答:(a)NADH(还原型烟酰胺腺嘌呤二核苷酸)或者NADPH(还原型烟酰胺腺嘌呤二核苷酸磷酸),在上述两种情况下都是由烟酸衍生的。 (b)NAD(烟酰胺腺嘌呤二核苷酸),由烟酸衍生的。 (c)生物胞素(一种生物素-Lys残基),由生物素衍生的。 (d)TPP(硫胺素焦磷酸);由硫胺素(维生素B1)衍生的。 (e)四氢叶酸,由叶酸衍生的。 (f)CoA(辅酶A),由泛酸衍生的。 (g)PLP(吡哆醛-5-磷酸),由吡哆醇(维生素B6)衍生的。

2、某哺乳动物肝脏样品在三氯甲烷和水的混合物中匀浆,维生素A、B6、C、D各分布在哪一相中?

答: 在水相中将会发现维生素B6和维生素C,在有机相中将会发现脂溶性的维生素A和D。

3、人对烟酸(尼克酸)的需要量为每天 7.5毫克。当饮食中给予足量的色氨酸时,尼克酸的需要量可以降低。由此观察,尼克酸与色氨酸的代谢有何联系?当饮食是以玉米为主食,而肉类很少时,人们易得癞皮病,为什么这种情况会导致尼克酸的缺乏,你能给予说明吗?

答:烟酸既是生物合成色氨酸所必需的,又可以由色氨酸合成。玉米中色氨酸的含量低。

4、在一个典型的实验中,给予鸽子的一种实验饲料,浙渐地发现它们无法推持平衡及协调。而且它们的血液及脑中的丙酮酸比正常鸽子高出许多。若喂给鸽子肉汁,则此症状可以防止或改善。你能解释这个现象吗? 答:硫胺素缺乏。

5、在冰箱内鸡蛋可保持4到6周仍不会变坏,但是去除蛋白的蛋黄,即使放在冰箱也很快地变坏。

(a)什么因素因素使蛋黄变坏的呢?

(b)你如何解释鸡蛋蛋白可以防止蛋黄变坏? (c)这种保护模式对鸟类有什么益处? 答:(a)细菌生长(b)抗生物素蛋白结合游离的生物素抑制细菌生长(c)在孵卵期,它保护了发育的胚胎免受破坏性细菌的生长。

6、 请写出维生素B1、B2的名称及它们的辅酶形式,它们是什么酶的辅酶? 怎样防止夜盲症、佝偻病、脚气病和坏血症? 答:分别服用维生素A、D、B1、C。

7、为什么维生素A及D可好几个星期吃一次,而维生素B复合物就必须经常补充? 答:维生素A和D是脂溶性的维生素,可以贮存。但B族维生素是水溶性的,不能贮存,即维生素B复合物的高溶解度导致了其快速排泄,所以必须经常补充。

21

8、角膜软化症是因维生素A缺乏,而使眼球乾燥及失去光泽,甚至造成失明。这种疾病危害很多小孩,但很少影响大人。在热带地区,每年约有10000个年纪18到36个月的小孩,因罹患此病而致瞎,相反大人即使食用维生素A缺乏的食物2年以上,结果只是患有夜盲症而已。当给予维生素A,则夜盲症很容易消失。请您解释为什么维生素A缺乏对小孩及大人的影响的差异会这么大? 答:成熟的肝脏储存维生素A。

9、肾性骨发育不全,或称肾性佝楼症,这种疾病主要是骨骼矿物质排除过多。肾病患者,即使给予均衡饮食,仍然会有肾性骨发育不全发生。请问哪一种维生素与骨骼矿物质化有关?为什么肾脏受损会造成骨骼矿物质排除过多。

答:维生素D3;受损的肾脏妨碍维生素D3完全羟化形成其生物活性形式

1、已知一个只含有C、H和O的未知物质是从鸭肝中分离出的。当0.423g该物质在过量氧气存在下完全燃烧后生成0.620gCO2和0.254gH2O。该物质的实验式与糖的是否一致?

答: 一致;该物质的实验式为CH2O,是一种典型的糖。

2、醛糖的羰基氧可以还原为羟基,醛糖转化为糖醇,当D-甘油醛还原为甘油后,为什么不再命名为D-或L-甘油了呢? 答: 当甘油醛的羰基还原为羟基后,C-1和C-3的化学特性相同,所以甘油分子不是一个手性分子。

3、蜂蜜中的果糖主要是β-D-吡喃糖。它是已知最甜的一种物质,其甜度大约是葡萄糖的两倍。但β-D-呋喃型果糖的甜度就低得多了。在温度高时,蜂蜜的甜味逐渐减少。高浓度果糖的玉米糖浆常用来增强冷饮而不是热饮饮料的甜味,这是利用了果糖的什么化学性质?

答:因为果糖既可环化生成吡喃糖,也可环化成呋喃糖。增加温度会使平衡倾向于甜味较少的呋喃果糖生成的方向。

4、刚制备的D-α-半乳糖溶液(1克/毫升,在10cm小室中)的旋光度为+150.7°,放置一段时间后,溶液的旋光度逐渐降低,最后达到平衡值:+80.2°,而刚制备的D-b-半乳糖溶液(1克/毫升)旋光度只有+52.8°,但逐渐增加,过一段时间后,亦变为+80.2°。

(a)画出a,b两种构型的Haworth投影式,两构型的特征表现在哪?(b)为什么刚制备的a型溶液其旋光度随时间渐减?而等浓度的a型和b型在达到平衡时其旋光度又相同?

(c)试计算平衡时两种构型半乳糖各占百分比是多少? 答:(a) (b)新制备的α-D-半乳糖溶液经变旋作用形成α和β型的平衡混合物。 (c)28%α型,72%β型。

5、蔗糖(旋光度为+66.5°)水解生成等摩尔的D-葡萄糖(旋光度为+52.5°)和D-果糖(旋光度为-92°)的混合物。

(a)提出一方便的方法,以确定由小肠壁提取的转化酶水解蔗糖的速率。 (b)为什么由蔗糖水解形成的等摩尔D-葡萄糖和D-果糖的混合液在食品工业上被称之转化糖?

(c)转化酶(即蔗糖酶)作用于蔗糖溶液至混合液的旋光度变为0时,多少蔗糖被水解? 答:(a)监测旋光度随时间的变化。 (b)混合物的旋光度相对于蔗糖溶液的旋光度是负值(由原来的正值转化为负值)。 (c)63%蔗糖。 6、乳糖存在二个异构体,但蔗糖没有异构体,如何解释? 答:因为蔗糖没有游离异头碳,蔗糖是个还原糖。

22

7、纤维素和糖原都是由D-葡萄糖残基通过(1→4)连接形成的聚合物,但它们的物理特性差别很大。例如从棉花丝得到的几乎纯的纤维素是坚韧的纤维,完全不溶于水。相反从肌肉或肝脏中得到的糖原容易分散到热水中,形成混浊液。这两种聚合糖的什么结构特征使得它们的物理特性有这么大的差别?纤维素和糖原的结构特征确定了它们的什么生物学作用?

答:天然纤维素是由通过β(1→4)糖苷键连接的葡萄糖单位组成的,这种糖苷键迫使聚合物链成伸展的构型。这种一系列的平行的聚合物链形成分子间的氢键,它们聚集成长的、坚韧的不溶于水的纤维。糖原主要是由通过α(1→4)糖苷键连接的葡萄糖单位组成的,这种糖苷键能引起链弯曲,。防止形成长的纤维。另外糖原是个具有高分支(通过α(1→6))的聚合物。它的许多羟基暴露于水,可被高度水合,因此可分散在水中。

纤维素由于它的坚韧特性,所以它是植物中的结构材料。而糖原是动物中的贮存燃料。带有许多非还原末端的高度水合的糖原颗粒可被糖原磷酸化酶快速水解释放出葡萄糖-1-磷酸。

8、青霉素是如何发挥它的抗菌作用的?

答:青霉素的抗菌作用是抑制肽聚糖合成中的一步特殊的反应,肽聚糖是革兰氏阳性菌细胞壁的主要成分。青霉素抑制催化肽聚糖合成的最后一步反应的转肽酶。青霉素的结构类似于转肽酶底物末端的二肽D-Ala-D-Ala的结构。

9、某些糖蛋白的寡糖部分可以作为细胞的识别部位。为了执行这一功能,寡糖部分应当具有形成多种结构形式的潜力。如果寡肽是由5个不同氨基酸残基组成,寡糖是由5个不同的单糖残基组成,那么是寡肽还是寡糖产生的结构的多样性更多?

答:寡糖;它的单糖单位要比寡肽的氨基酸单位的结合方式更多。因为每个单糖的羟基都可以参与糖苷键的形成,而且每个糖苷键的构型既可以是α型,也可以是β型。聚合物可以是线性的,也可以是带有分支的。

脂和生物模

1、在 pH=7时,判断下列物质的带电状况?

(a)磷脂酰胆碱 (b)磷脂酰乙醇胺 (c)磷脂酰丝氨酸 答:(a)0 (b)0 (c)-1

2、按相变温度由低到高,将下列磷脂酰胆碱排序,并解释排序的理由。

二油酰磷脂酰胆碱 (18:1,顺式双键), 二反油酰磷脂酰胆碱(18:1,反式双健), 二亚麻酰磷脂酰胆碱(18:2顺式双键), 二硬脂酰磷脂酰胆碱(18:0)

答: 二亚麻酰磷脂酰胆碱,二油酰磷脂酰胆碱,二反油酰磷脂酰胆碱,二硬脂酰磷

脂酰胆碱。由于一个反式双键并不引起脂酰链的弯折,所以并不降低Tm;而顺式双键则相反,引入弯折降低Tm,两个顺式双键在脂酰键中产生两个弯折从而比一个顺式双键更大程度地增加流动性。 3、下列十八碳的脂肪酸的熔点分别是:硬脂酸( 69.6°),油酸( 13.4°),亚油酸(-5°),亚麻酸( -11°)。(a)它们的结构与相应的熔点有什么相关性?(b)画出由甘油、软脂酸和油酸构成的可能的三脂酰甘油的结构式,并按照熔点逐渐增加的排序。(c)某些细胞的膜脂中含有支链脂肪酸,它们的存在是增加还是降低膜的流动性(即具有较低或较高的熔点),为什么? 答:(a)顺式双键数;每一顺式双键都引起碳氢链的一个弯曲,可降低熔点。(b)

可以构成6种不同的三脂酰甘油,按熔点次序排:OOO < OOP =OPO < PPO=POP < PPP,这里的O代表油酸,P代表软脂酸。(c)支链脂肪酸能增加膜的流动性,因为它们可以降低膜脂的堆积。

4、清除动物脂肪沉积的最常见的办法是使用一些含有氢氧化钠的产品,这是什么道理? 答:动物脂肪主要成分是三脂酰甘油,它可以被氢氧化钠水解(皂化),生成肥皂,

23

肥皂在水中的溶解度比脂肪高得多。

5、假设你在超市上发现了两种都是由100%玉米油制造的黄油,但一种是通过使玉米油氢化制造的,另一种是通过乳化制造的。哪一种黄油含有更多的不饱和脂肪酸? 答:通过乳化工艺制造的黄油含有更多的不饱和脂肪酸。因为氢化是使不饱和脂肪

酸转变为饱和脂肪酸。

6、一些药物必须在进入活细胞后才能发挥药效,但它们中大多是带电或有极性的,因此不能靠被动扩散跨膜。人们发现利用脂质体运输某些药物进入细胞是很有效的办法,试解释脂质体是如何发挥作用的。 答:脂质体是脂双层膜组成的封闭的、内部有空间的囊泡。离子和极性水溶性分子(包括许多药物)被包裹在脂质体的水溶性的内部空间,负载有药物的脂质体可以通过血液运输,然后与细胞的质膜相融合将药物释放入细胞内部。 7、 一个红细胞的表面积大约为100μm2,从4.7×109个红细胞分离出的膜在水中形成面积为0.890m2的单层膜。从这个实验就细胞膜的构成能得出什么结论?

答:由一个红细胞的膜铺成的单层面积为[0.890×1012μm2]/(4.74×109)=188。由于红细胞表面积只有100μm2,所以覆盖红细胞表面积的脂是双层的,即188/100≈2。换言之红细胞膜是由双层脂构成的。 8、脂质体是一个连续的自我封闭的脂双层结构。 (a)脂双层形成的驱动力是什么? (b)生物膜的结构对生物有什么重要作用? 答:(a)形成双层的磷脂分子是两性分子(含有亲水和疏水部分)。脂双层的形成是由磷脂的疏水作用驱动的,这时磷脂疏水的脂酰链倾向于脱离与水的接触,水溶液中的磷脂分子的非极性尾部被水分子包围,磷脂分子之间为避开水疏水尾部彼此靠近,当磷脂双层结构形成时,脂酰链被限制在疏水的内部,而排挤出有序的水分子。该过程导致这些水分子的熵大大增加,熵增加的量大大地超过由于更多有序的脂双层的形成导致熵减少的量。增加的熵以及脂双层中的相邻的非极性尾部之间的范德华接触对有利的(负的)自由能变化都有贡献,因此整个过程可以自发进行。

(b)生物膜主要是由蛋白质、脂质、多糖类组成,形成一个流动的自封闭体系,它对生物的作用主要体现在以下方面: 1、 可以提供一个相对稳定的内环境。

2、 生物膜可以进行选择性的物质运输,保证生物体的正常生理功能。

3、 生物膜与信号传导、能量传递、细胞识别、细胞免疫等细胞中的重要过程相关。总之,生物膜使细胞和亚细胞结构既各自具有恒定、动态的内环境,又相互联系相互制约。

9、许多埋在膜内的蛋白(内在蛋白)与细胞中的蛋白质不同,它们几乎不可能从膜上转移至水溶液中。然而,此类蛋白的溶解和转移,常可用含有十二烷基硫酸钠或其它的去污剂,例如胆酸的钠盐等溶液来完成,这是什么道理?

答:十二烷基磺酸钠和胆酸钠等去污剂,都具有亲水和疏水两部分,它们可以破坏蛋白与膜之间的疏水相互作用,并用疏水部分结合蛋白的疏水部分,亲水部分向外,形成一个可溶性微团,将蛋白转移到水中。 10、 将某细菌从37℃的生长温度转移至25℃后,利用什么手段可以恢复膜的流动性? 答:通过生产更多的不饱和脂肪酸链或较短的脂肪酸链可恢复膜的流动性。因为在较低的生长温度下,细菌必须合成具有更低Tm(高流动性)的不饱和脂肪酸或短的脂肪酸链,才能恢复膜流动性。

核 酸

1、比较蛋白质α螺旋中的氢键和DNA双螺旋中的氢键,并指出氢键在稳定这两种结构中的作用。

答: 在α-螺旋中,一个残基上的羧基氧与旋转一圈后的(该残基后面)第四个残基

24

上的α-氨基中的氮形成氢键,这些在肽链骨架内原子间形成的氢键大致平行于该螺旋的轴,氨基酸侧链伸向骨架外,不参与螺旋内的氢键形成。在双链DNA中糖-磷酸骨架不形成氢键,相反在相对的两条链中互补的碱基之间形成2个或3个氢键,氢键大致垂直于螺旋轴。

在α-螺旋中,单独的氢键是很弱的,但是这些键的合力稳定了该螺旋结构。尤其是在一个蛋白质的疏水内部,这里水不与氢竞争成键。在DNA中形成氢键的主要作用是使每一条链能作为另一条链的模板,尽管互补碱基之间的氢键帮助稳定螺旋结构,但在疏水内部碱基对之间的堆积对螺旋结构的稳定性的供献更大。 2、一段双链DNA包含1000个碱基,其组成中G+C占58%,那么在DNA的该区域中胸腺嘧啶残基有多少?

答: 如果58%的残基是G+C,42%的残基必定为A+T。因为每一个A与相对链上的一个T相配,A残基的数量与T残基的数量相等,因而21%或420个残基为T(2000×0.21=420)。

3、双螺旋DNA一条链的碱基序列为(5ˊ)GCGCAATATTTCTCAAAATATTGCGC-3ˊ,写出它的互补链。该DNA片段中含有什么特殊类型的序列?该双链DNA有能力形成另外一种结构吗? 答:(5ˊ)GCGCAATATTTTGAGAAATATTGCGC-3ˊ,含有回文序列;单链内可形成发卡结构;双链可形成十字结构。

4、用适当的碱基取代下面序列中的X,给出一个完整的反向重复结构。 5ˊG-A-T-C-A-T-X-X-X-X-X-X 3ˊ 3ˊX-X-X-X-X-X-X-X-X-X-X-X 5ˊ

答: 5ˊG-A-T-C-A-T-A-T-G-A-T-C 3ˊ 3ˊC-T-A-G-T-A-T-A-C-T-A-G 5ˊ

5、两个DNA分子,其长度相等,碱基组成不同,一个含有20%(A+T),另一个含有60% (A+T),哪个分子的Tm较高?

答:含有20%(A+T)的DNA分子具有更高的Tm。因为它含有80%(G+C)。因为G-C碱基对之间存在3个氢键,所以使富含G/C的DNA变性需要更多的能量。

6、有二个DNA样品,分别来自两种未确认的细菌,两种DNA样品中的腺嘌呤碱基含量分别占它们DNA总碱基的32%和17%。这两个DNA样品的腺嘌呤,鸟嘌呤,胞嘧啶和胸腺嘧啶的相对比例是多少?其中哪一种DNA是取自温泉(64℃)环境下的细菌,哪一种DNA是取自嗜热菌?答案的依据是什么?

答:一个DNA含量为32%A、32%T、18%G和18%C,另一个为17%A、17%T、33%G和33%C,均为双链DNA。前一种取自温泉的细菌,后一种取自嗜热菌,因为其G-C含量高,变性温度高因而在高温下更稳定。

7、溶液A中含有浓度为1M的20个碱基对的DNA分子,溶液B中含有0.05M的400个碱基对的DNA分子,所以每种溶液含有的总的核苷酸残基数相等。假设DNA分子都有相同的碱基组成。

(a)当两种溶液的温度都缓慢上升时,哪个溶液首先得到完全变性的DNA? (b)哪个溶液复性的速度更快些? 答:(a)溶液A中的DNA将首先被完全变性,因为在20个碱基对螺旋中的堆积作用力比在400个碱基对螺旋中的力小很多,在DNA双链的末端的DNA的碱基对只是部分堆积。在片段短的分子中这种\"末端效应\"更大。

(b)在溶液A中复性的速率更大。成核作用(第一个碱基对的形成)是一个限速步骤,单链分子的数目越大,重新形成碱基对的机率就越大,因而在溶液A中的DNA(含有2M单链DNA)将比溶液B中的DNA(含有0.1M单链DNA)更快地复性。

8、一DNA样品,为线性的双螺旋。取部分样品涂布在栅板上,温度维持在20℃用电子显

25

微镜观察;另取部分样品进行同样的操作,只是温度为60℃,30分钟后,用电子显微镜观察。发现线性的双螺旋中出现了一些\"眼\"形(也称之θ形)结构,请解释此现象?这种现象能提供什么有用的信息? 答:\"眼\"形结构是由于双螺旋DNA局部片段解旋形成的。这些片段富含A-T碱基对,A-T比G-C的热稳定性差。用这种方法可以检测DNA双螺旋链中碱基组成上的差别。 9、两条长度、浓度都相同的单链DNA探针加入到从人细胞系中提取的DNA片段混合组分中。一个探针与核糖体RNA的某个区域互补,另一个与球蛋白mRNA的某个区域互补。加热混合物使DNA片段变性,然后再冷却。为什么核糖体RNA探针形成双链结构比球蛋白mRNA要早?

答:因为核糖体RNA基因是多拷贝的。在人体内的任一个细胞中,核糖体RNA基因在数目上远远高于球蛋白基因,因此一个rRNA探针遇到一个互补的人DNA序列的几率远远高于球蛋白探针。

10、 如果人体有1014个细胞,每个体细胞的DNA含有6.4×109对核苷酸,试计算人体DNA 的总长度为多少千米?这个长度相当于地球与太阳之间距离(2.2×109千米)的多少倍?

答:2.2×1011千米;100倍

代谢导论

1、.在磷酸解中,一个键是受到无机磷酸的攻击(而不是象水解那样受水攻击)并被切断。某细菌含有蔗糖磷酸化酶,它能催化蔗糖的磷酸解: 蔗糖+磷酸→葡萄糖1-磷酸+果糖

(a)从以下数据,计算蔗糖的磷酸解中的标准自由能变化。 H2O+蔗糖→葡萄糖+果糖 △G0ˊ=-29KJ/ mol

H2O+葡萄糖-1-磷酸→葡萄糖+磷酸 △G0ˊ=-21KJ/mol (b)计算蔗糖磷酸解的平衡常数。

答: (a)计算蔗糖磷酸解的标准自由能变化,只需要将两个反应原标准自由能变化加起来,而这两个反应组合就是总反应。 △G0ˊ(KJ /mol)

H2O+蔗糖→葡萄糖+果糖 -29 葡萄糖+磷酸→H2O+葡萄糖-1-磷酸 21 蔗糖+磷酸→葡萄糖-1-磷酸+果糖 -8

因此蔗糖磷酸解的标准自由能变化为-8KJ/mol。 (b)△G0ˊ=-RTlnKeq, Keq=25

2、指出下列磷酸化合物中哪些是高能量的,并指明高能键。

见图

答: 术语\"高能\"通常用于指在水解时释放相当大能量的化合物,该化合物分子的裂解时断裂的键就叫做\"高能键\"。但是在基团转移反应中这些化合物的高反应活性并不是由于仅仅一个键的缘故而在于整体的结构。

(a) 是一个高能分子,但是仅有一个磷酰基团,即羧基-磷酸酐具有高能,而磷酯

键不是高能键。

(b)不是一个高能分子,因为它是一个磷酯。

(c)是一个类似于氨甲酰磷酸的高能分子,氨甲酸磷酸酐是高能化合物。

(d)是一个高能分子,类似于磷酸烯醇式丙酮酸,该化合物含有一个高能的烯醇式磷酸键。

(e)是一个高能分子,类似于磷酸肌酸或磷酸精氨酸的水解,该分子磷酸胍N-P键的水解放出相当大的能量。 却2个图 3、辅酶Q的标准还原电势是+0.04V,黄素腺嘌呤二核苷酸(FAD)的标准还原电势为-0.22V。说明FADH2被辅酶Q氧化时理论上释放的能量在标准条件下可以驱动由ADP+Pi合成

26

ATP。

答:首先计算耦合的氧化-还原反应的标准还原电势,然后计算标准自由能变化。因为将ATP水解为ADP+Pi的标准自由能变化为-30KJmol-1,因此ATP合成的标准自由能变化为+30KJ/mol。所以FADH2被辅酶Q氧化时理论上释放的能量要比由ADP+Pi合成ATP所需的自由能更多。见图 4、成年人每天利用ATP情况。

(a)一个68kg的成年人每天(24h)需要此食物中摄取2000kcal(8360kJ)热量。食物代谢产生的能量主要用于身体日常的化学反应和机械功。假设食物能量转化为ATP的效率是50%,计算成年人24h所利用的ATP的重量,它是人体重的百分之多少? (b)虽然成年人每天合成大量的ATP,但人本身的重量、构造和组成在此期间没有明显改变,试解释看似矛盾的现象。

答: (a)46kg;68% (b)ATP按照身体需要合成,然后降解为ADP和Pi,所以ATP的浓度维持在一个稳态水平,对身体没有明显影响。 5、任何氧化还原电对的标准还原电位都是由半电池反应确定的。NAD+/NADH和丙酮酸/乳酸的标准还原电位分别为-0.32V和-0.19V。 (a)哪一个共轭电对有较大失去电子的倾向? (b)哪一个共轭电对有较强的氧化能力?

(c)如果在pH7时,每一反应物和生成物的浓度为1M,试问下列反应进行的方向。丙酮酸 +NADH+H+=乳酸+NAD+

(d)在25℃,此反应的标准自由能的变化ΔG°†。 (e)在25℃,此反应的平衡常数? 答:(a)NAD+/NADH(b)丙酮酸/乳酸(c)乳酸形成方向(d)-25KJ/mol(e)2.5×104

PPP and TCA

1、人血浆中的葡萄糖大约维持在5mM。而在肌肉细胞中的游离葡萄糖浓度要低得多。细胞内的葡萄糖浓度为什么如此之低?临床上常用静脉注射葡萄糖来补充病人食物来源,由于葡萄糖转换为葡萄糖-6-磷酸要消耗ATP的,那么临床上却不能直接静脉注射葡萄糖-6-磷酸呢?

答:因为进入肌肉细胞的葡萄糖常常被磷酸化,葡萄糖一旦磷酸化就不能从细胞内逃掉。在pH7时,葡萄糖-6-磷酸的磷酸基团解离,分子带净的负电荷。由于膜通常对带电荷的分子是不通透的,所以葡萄糖-6-磷酸就不能从血流中进入细胞,因此也就不能进入酵解途径生成ATP。

2、把C-1位用14C标记的葡萄糖与能进行糖酵解的无细胞提取物共同温育,标记物出现在丙酮酸的什么位置?

答: 被标记的葡萄糖通过葡萄糖-6-磷酸进入酵解途径,在果糖-1.6二磷酸被醛缩酶裂解生成甘油醛-3-磷酸和磷酸二羟丙酮之前标记始终出现在C-1。因为磷酸二羟丙酮含有最初葡萄糖分子的C-1至C-3原子,因而它的C-1带有标记。然后磷酸二羟丙酮异构化变为甘油醛-3-磷酸,最终14C出现在丙酮酸的甲基上。 3、增加以下各种代谢物的浓度对糖酵解有什么影响?

(a)葡萄糖-6-磷酸 (b) 果糖-1.6-二磷酸 (C) 柠檬酸 (d) 果糖-2.6-二磷酸 答:(a)最初葡萄糖-6-磷酸浓度的增加通过增加葡萄糖6-磷酸异构酶的底物水平以及以后的酵解途径的各步反应的底物水平也随之增加,从而增加了酵解的速度。然而葡萄糖-6-磷酸也是己糖激酶的一个别构抑制剂,因此高浓度的葡萄糖-6-磷酸可以通过减少葡萄糖进入酵解途径从而抑制酵解。 (b)果糖-1.6-二磷酸是由磷酸果糖激酶-1催化反应的产物,它是酵解过程中主要的调控点,增加果糖-1.6-二磷酸的浓度等于增加了所有随后糖酵解途径的反应的底物

27

水平,所以增加了酵解的速度。

(c)柠檬酸是柠檬酸循环的一个中间产物,同时也是磷酸果糖激酶-1的一个反馈抑制剂,因而柠檬酸浓度的增加降低了酵解反应的速率。

(d)果糖-2,6-二磷酸是在磷酸果糖激酶-2(PFK-2)催化的反应中由果糖-6-磷酸生成的,因为它是磷酸果糖激酶-1(PFK-1)的激活因子,因而可以增加酵解反应的速度。

4、在严格的厌氧条件下酒精发酵过程中,使用放射性标记的碳源进行示踪原子实验。 (a)如果葡萄糖的第1个碳用14C标记,那么14C将出现在产物乙醇的哪个位置上? (b)在起始的葡萄糖分子的哪个位置上标记14C ,才能使乙醇发酵释放出的二氧化碳都是14C标记的14CO2。 答:(a)14CH3-CH2-OH(b)3,4-14C-葡萄糖

5、当肌肉组织激烈活动时,与休息时相比需要更多的ATP。在骨骼肌里,例如兔子的腿肌或火鸡的飞行肌,需要的ATP几乎全部由嫌氧酵解反应产生的。假设骨骼肌缺乏乳酸脱氢酶,它们能否进行激烈的体力活动,即能否借助于酵解反应高速率生成ATP? 答:不能,需要乳酸脱氢酶将甘油醛-3-磷酸氧化过程中生成的NADH氧化为NAD+再循环。

6、尽管O2没有直接参与柠檬酸循环,但没有O2的存在,柠檬酸循环就不能进行,为什么?

答:需要氧将柠檬酸循环中氧化反应生成的NADH氧化为NAD,以便保证循环正常进行。而NADH氧化发生在线粒体的需要O2的电子传递和氧化磷酸化过程中。

7、柠檬酸循环共涉及八种酶使乙酰基氧化,它们是柠檬酸合成酶,顺乌头酸酶,异柠檬酸脱氢酶,α-酮戊二酸脱氢酶,琥珀酰辅酶A合成酶,琥珀酸脱氢酶,延胡索酸酶和苹果酸脱氢酶。写出每一种酶所催化的反应平衡方程式以及每一酶促反应需要的辅助因子。

答:柠檬酸合成酶:乙酰辅酶A+草酰乙酸+H2O→柠檬酸+辅酶A+H+(辅酶A)乌头酸酶:柠檬酸→异柠檬酸异柠檬酸脱氢酶:异柠檬酸+NAD+→α-酮戊二酸+CO2+NADH(NAD+)α-酮戊二酸脱氢酶:α-酮戊二酸+NAD++辅酶A→琥珀酰辅酶A+CO2+NADH(NAD+、辅酶A和焦磷酸硫胺素)琥珀酰辅酶A合成酶:琥珀酰辅酶A+Pi+GDP→琥珀酸+GTP+辅酶A(辅酶A)琥珀酸脱氢酶:琥珀酸+FAD→延胡索酸+FADH2(FAD)延胡索酸酶:延胡索酸+H2O→苹果酸苹果酸脱氢酶:苹果酸+NAD+→草酰乙酸+H++NADH(NAD+)

8、用捣碎的肌肉组织进行的早期实验表明,柠檬酸循环是需氧途径,通过此循环代谢的物质最终氧化成CO2。但是加入循环中间产物会导致消耗比预期多的氧气。例如肌肉匀浆中加入1μmol的延胡索酸,需要消耗25μmoL的氧气,但下面的氧化反应方程式显示,只需要3μmoL氧气就能完全氧化1μmol的延胡索酸。当琥珀酸、苹果酸和草酰乙酸加入肌肉匀浆液中时也有类似现象。试解释为什么这些中间物的加入会导致比预期多的氧气消耗。

-OOCCH=CHCOO + 3O2→4CO2 + 2H2O

答:在柠檬酸循环过程中O2的消耗是必不可少的,因为需要氧化在丙酮酸转化为CO2

的过程中生成的NADH和QH2,当柠檬酸循环的速度增加时,O2的消耗速率也增加,因为柠檬酸循环为环式,因而柠檬循环的中间体极大地剌激了O2的利用。延胡索酸并不是被氧化生成4个CO2(该过程需要3个O2),相反它进入柠檬酸循环生成一个分子的草酰乙酸,草酰乙酸在柠檬酸合成酶的催化作用下可与一分子的乙酰CoA缩合生成一分子的柠檬酸,从柠檬酸开始又可再生一分子延胡索酸,所以没有净消耗,它起着催化剂的作用,是加快了柠檬酸循环,这当然比它直接氧化消耗的氧多得多。当然要观察到这些催化效应,在该组织中必须供给足够的丙酮酸或乙酰CoA。

其它中间产物如琥珀酸、苹果酸和草酰乙酸进入柠檬酸循环,也是通过增加循环中

28

间体的浓度,加速了整个柠檬酸循环的速度,因此极大地剌激了O2的消耗。

9、利用分离出的线粒体可以研究细胞呼吸,可测定各种不同状况下氧的消耗,如果将 0.01M的丙二酸钠添加正在进行细胞呼吸的线粒体(以丙酮酸为燃料来源)中,呼吸作用很快就会停止,并造成代谢中间产物的堆积。 (a)堆积的中间代谢物是什么? (b)解释为什么会堆积?

(c)解释氧消耗为什么会停止?

(d)除了除去丙二酸解除抑制以外,还有什么方法可以克服丙二酸的抑制? 答:(a)琥珀酸 (b)丙二酸是琥珀酸脱氢酶的竞争性抑制剂。 (c)阻断柠檬酸循环就阻断了NADH的合成从而阻断了电子传递和呼吸。(d)琥珀酸浓度大大过量。 10、 通过将乙酰CoA加入到只含有酶、辅酶和柠檬酸循环中间产物的无细胞体系中,能否净合成草酰乙酸?

答:不能。因为该循环存在一物质平衡。两个C以乙酰CoA中乙酰基的形式加入该循环,且这两个C又以两个CO2的形式被释放出来。同时,在循环中没有净C原子的滞留,也就不可能有中间产物的净合成。而乙酰CoA中的CoA部分是以CoA形式释放出来的。

糖代谢中的其它途径

1、从葡萄糖-6-磷酸合成糖原所需的能量是否等同于糖原降解为葡萄糖-6-磷酸需要的能量?

答:从葡萄糖-6-磷酸合成糖原需要更多的能量,在糖原合成的过程中,有一个高能磷酸酐键被水解,即

由UDP-葡萄糖焦磷酸酶作用下形成的PPi很快地水解为2Pi;而糖原降解生成葡萄糖-6-磷酸不需要能量,因为葡萄糖残基是通过磷酸解反应被移去的。 图 2、解释以下各项对肝细胞中的糖异生有何作用: (a)降低乙酰CoA的浓度

(b) 增加2.6-二磷酸果糖的浓度 (c)增加果糖-6-磷酸的浓度

答: (a)乙酰CoA别构激活丙酮酸羧化酶;该酶在从丙酮酸生糖过程第一步反应中将丙酮酸转化为草酰乙酸,因而将乙酰CoA浓度降低,降低了生糖反应的速率。

(b)增加果糖2.6-二磷酸(F-2,6-BP)的浓度降低了生糖反应的速率,同时增加了酵解反应的速率,F-2,6-BP抑制生糖反应途径中的果糖-1,6-二磷酸酶而激活了酵解酶磷酸果糖激酶-1。 (c)增加果糖-6-磷酸的浓度降低了生糖反应的速率,果糖-6-磷酸不仅仅是葡萄糖-6-磷酸异构酶的一个底物而且也是磷酸果糖激酶-1和磷酸果糖激酶-2的底物,后两者可以将果糖-6-磷酸分别转化为果糖-1,6-二磷酸和果糖-2,6-二磷酸,果糖-2,6-二磷酸是磷酸果糖激酶-1的一个别构激活因子,同时也是果糖-1,6-二磷酸酶的一个别构抑制剂,因此果糖-6-磷酸浓度的增加,以及由此增加的果糖-2,6-二磷酸使酵解作用超过了生糖的作用。图

3、许多组织中,对细胞损伤的最早期反应之一是快速地增加参与磷酸戊糖途径的酶的水平。损伤后10天,心脏组织的葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶的水平是正常水平的20至30倍,而糖酵解酶只有正常水平的10%至20%。解释此现象。 答:修复受伤的组织需要细胞增殖并且合成疤痕组织,NADPH是合成胆固醇和脂肪酸(细胞膜的组分)所必需的,而核糖-5-磷酸是合成DNA和RNA所必需的。因为戊糖磷酸途径是NADPH和核糖-5-磷酸的主要来源,所以在受伤后,组织对这些产物要求的增加所做的反应就是增加戊糖磷酸途径中各种酶合成的量。

4、如果柠檬酸循环与氧化磷酸化整个都被抑制,那么是否能从丙酮酸净合成葡萄糖?

29

答:不能;两分子丙酮酸转化为一分子葡萄糖需要供给能量(4ATP+2GTP)和还原力(2NADH),可通过檬酸循环和氧化磷酸化获得

5、鸡蛋清中的抗生物素蛋白对生物素的亲和力极高,如果将该蛋白加到肝脏提取液中,对丙酮酸经糖异生转化为葡萄糖有什么影响?

答:会阻断丙酮酸经糖异生转化为葡萄糖的过程。因为生物素是催化丙酮酸羧化生成草酰乙酸反应的丙酮酸羧化酶的辅基,加入的抗生物素蛋白对生物素的亲和力高,使得反应缺乏生物素而中断。

6、从肝病患者得到的糖原样品与磷酸盐、糖原磷酸化酶、转移酶和去分支酶共同保温。结果在该混合物中所形成的葡萄糖-1-磷酸与葡萄糖之比为100。这一患者最有可能缺乏的是什么酶?

答:缺少分支酶,因为大约每隔10个葡萄糖残基就会出现一个由α-1,6糖苷键造成的分支。

7、在跑400公尺短跑之前、途中、之后血浆中乳酸浓度如图所示。 (a)为什么乳酸的浓度会迅速上升? (b)赛跑过后是什么原因使乳酸浓度降下来?为什么下降的速率比上升的速度缓慢? (c)当处于休息状态下,乳酸的浓度为什么不等于零? 图 答:(a)糖酵解加速运转,丙酮酸和NADH的增加导致乳酸的增加。

(b)乳酸经丙酮酸转化为葡萄糖,使乳酸浓度下降。这个糖异生过程比较慢,因为丙酮酸的生成受NAD+的可利用性的限制,同时乳酸脱氢酶(LDH)催化的反应有利于乳酸的生成,另外由丙酮酸转化为葡萄糖需要能量。

(c)因为乳酸脱氢酶催化的反应平衡更有利于乳酸的生成。

电子传递和氧化磷酸化

1、利用附表的数据,计算以下各氧化还原反应的标准还原势和标准自由能变化。 (a)乙醛+ NADH + H+→ 乙醇+NAD+

(b)氢醌(QH2) + 2细胞色素C(Fe3+) → 泛醌(Q)+2细胞色素C(Fe2+)+ 2H+ (c)琥珀酸+1/2O2 → 延胡索酸+水 答:半反应可以写作

氧化态 + ne-→ 还原态两个半反应可以通过相加而获得一个耦合的氧化还原反应,书写时要将总反应中涉及到的还原态物质的半反应改变方向,同时也要改变它的还原电势的符号。(a)-23kJ /mol (b)-52 kJ /mol (c)-150 kJ /mol

2、在电子传递链中发现有6 种细胞色素都能通过可逆的氧化还原反应Fe3+ → Fe2+催化一个电子的传递。尽管铁在每种情况下都是电子载体,但是还原半反应的EO的值却从细胞色素b的0.05V变化到细胞色素a3的0.39V,试解释之。 答: 细胞色素是含有血红素基团的电子传递蛋白,在卟啉环中的每个铁原子的还原电势依赖于周围蛋白质的环境,因为每个细胞色素的蛋白质成分是不同的,因而每个细胞色素的铁原子具有不同的还原电势,还原电势的不同使一系列细胞色素可以沿着电势梯度传递电子

3、细胞色素之间的电子传递涉及一个电子从一个铁原子上向另一个铁原子上转移。第二种电子转移方式则涉及氢原子和电子,在生物的氧化还原反应中,一个氢分子(H2或H:H)转移是普遍存在的。指出H2转移的两种机制,分别举例之。

答:一个氢分子含有2个质子和2个电子,通过如下两种机制之一可以在生物体内由可氧化的底物进行传递。 在NAD+还原过程中,一个氢离子(H:-)被转移到尼克酰胺环上同时H+被释放到溶液中,在FADH2的氧化过程中,通过等价的两个氢自由基(H·)实现转移,组成自由基的H+和电子通过分步进行的方式实现转移(H++e-=H)。

4、超声处理产生的线粒体内膜碎片,内面朝外重新闭合形成的球状膜泡称为亚线粒体

30

泡。这些小泡能够在NADH或QH2这样的电子源存在时,合成ATP。画图显示在这些小泡中从NADH开始的电子传递以及随后的质子转运是如何发生的?

答:电子传递链的蛋白质镶嵌于线粒体的内膜,当膜的内侧被置于外侧时氧化还原酶的质子泵将H+运送到亚线粒体泡内(内部的pH值下降),同时电子传递给氧气,ATP合成酶现在将F1组分定位于小泡外侧,由于存在质子浓度梯度,H+通过F0通道转移到小泡的外侧,于是在该小泡的外侧可以合成ATP。图

5、鱼藤酮是来自植物的一种天然毒素,强烈抑制昆虫和鱼类线粒体NADH脱氢酶;抗霉素A也是一种毒性很强的抗生素,强烈抑制电子传递链中泛醌的氧化。 (a)为什么某些昆虫和鱼类摄入鱼藤酮会致死? (b)为什么抗霉素A是一种毒药?

(c)假设鱼藤酮和抗霉素封闭它们各自的作用部位的作用是等同的,那么哪一个的毒性更利害?

答:会阻断丙酮酸经糖异生转化为葡萄糖的过程。因为生物素是催化丙酮酸羧化生成草酰乙酸反应的丙酮酸羧化酶的辅基,加入的抗生物素蛋白对生物素的亲和力高,使得反应缺乏生物素而中断。

6、线粒体的呼吸链的电子传递可用下列净反应方程式表示:NANH+H+ +1/2O2=H2O+NAD+

(a)计算此反应的ΔE°†。

(b)计算标准自由能变化ΔG°†。

(c)如果一分子ATP合成的标准自由能为7.3 Kcal /mol,那么就理论上而言,上述总反应会生成多少分子的ATP? 答:(a)NADH脱氢酶被鱼藤酮抑制降低了电子流经呼吸链的速度,因此也就减少了ATP的合成。如果在这种情况下生成的ATP不能满足生物体对ATP的需求,生物体将死掉。

(b)因为抗霉素A强烈抑制泛醌的氧化,同样会发生(a)的情形。

(c)由于抗霉素A封闭了所有电子流向氧的路径,而鱼藤酮只是封闭来自NADH,而不是来自FADH2的电子的流动,所以抗霉素A的毒性更强。

7、在正常的线粒体内,电子转移的速度与ATP需求紧密联系在一起的。如果ATP的利用率低,电子转移速度也低;ATP的利用率高,电子转移就加快。在正常情况下,当NADH作为电子供体时,每消耗一个氧原子产生的ATP数大约为3(P/O=3)。

(a)讨论解耦联剂的浓度相对来说较低和较高时对电子转移和P/O比率有什么样的影响? (b)摄入解耦联剂会引起大量出汗和体温升高。解释这一现象,P/O比率有什么变化? (c)2,4-二硝基苯酚曾用作减肥药,其原理是什么?但现在已不再使用了,因为服用它有时会引起生命危险,这又是什么道理?表 答:(a)电子转移速度需要满足ATP的需求,无论解耦联剂浓度低和高都会影响

电子转移的效率,因此P/O的比率降低。高浓度的解耦剂使得P/O比率几乎为零。 (b)在解耦联剂存在下,由于P/O降低,生成同样量的ATP就需要氧化更多的燃料。氧化释放出额外的大量热,因此使体温升高。

(c)在解耦联剂存在下,增加呼吸链的活性就需要更多额外燃料的降解。生成同样量的ATP,就要消耗包括脂肪在内的大量的燃料,这样可以达到减肥的目的。当P/O比接近零时,会导致生命危险。

光合作用(普通生物学考)

1、蓝绿藻的光合作用器官中除了含有叶绿素外还含有大量的藻红素和藻蓝素。藻红素的最大吸收在480nm和600nm之间,而藻蓝素的最大吸收靠近620nm。这些色素在光合作用中有什么作用?

31

答: 藻红素和藻蓝素都起着天线色素的作用,它们吸收光谱范围内叶绿素a所不能

吸收的光,然后将它们的电子激发能传递给叶。 2、利用小球藻进行光合作用实验时,(a)如果将利用光照正在活跃进行光合作用的小球藻的光源突然关掉,那么在下一分钟3-磷酸-甘油酸和核酮糖-1,5-二磷酸的水平如何变化?

(b)如果将原来供给利用光照正活跃进行光合作用的小球藻的1%CO2浓度突然减少为0.003%,在下一分钟内这种变化对3-磷酸-甘油酸和核酮糖-1,5-二磷酸的水平有什么影响?

答: (a)3-磷酸-甘油酸的水平会增高,而核酮糖-1,5-二磷酸水平会下降。(b)3-磷酸-甘油酸水平会降低,而核酮糖-1,5-二磷酸水平会增高。 3、光合作用的速度可以通过氧气的生成来测量。当绿色植物用波长680nm的光照射时的光合作用速度要比用700nm光照射时大。如果这两种波长的光同时照射时的光合作用的速度要比它们中任何单一一种波长的光照射时高得多,这是什么道理? 答: 因为光合系统I和光合系统II同时运转,此时光合作用的速度最高。

4、当叶绿体中[NADPH]/[NADP+]比率高时,循环电子传递途径活跃,O2参与了循环电子传递了吗?有无NADPH生成?那么循环电子传递的主要作用是什么? 答: O2没有参与。来自于P700的激发电子又重新填充到由于光照形成的电子\"穴\"中,所以光系统II不需要提供电子,不需要由H2O裂解产生O2。没有形成NADPH,因为激发的电子又返回到P700了。

5、叶绿体悬浮液在黑暗中能否由CO2和H2O合成葡萄糖?如果不能,必须加入什么?假设所有还原性磷酸戊糖(RPP)循环中的中间物和激活的酶都存在。

答:因为由CO2和H2O合成葡萄糖是由光反应的产物驱动的,所以分离出的叶绿体在黑暗处不能合成葡萄糖。如果能够供应光反应的产物NADPH和ATP则在没有光的条件下叶绿体也能合成葡萄糖。

6、某些时候,在绿色植物中同时存在着循环的电子传递与非循环的电子传递途径,循环的电子传递途径能否产生ATP、O2、或NADPH? 答:在循环式电子传递的过程中,被还原的铁还原蛋白将它的电子返还给质醌(PQ)。当电子通过光系统Ⅰ再循环时,制造的质子梯度导致ATP的合成。但是没有NADPH生成,因为没有来自水的净电子流的传递。O2也不会生成,因为生成O2的场所在光系统II,而光系统II不参与循环电子传递。

7、指出限制下列因素对光合作用的速率的即时影响:(a)光 (b)CO2 (c) 电子传递速率 (d) RuBiSCO的活性 (e)叶绿体中无机磷酸的含量 答:(a)限制光降低了电子传递的速率,同时减慢了光合磷酸化和NADPH形成的速率,因而降低了CO2还原的能力。

(b)限制CO2浓度减慢了糖生成速度,并且在光照条件下能够导致O2和具有反应性的、损坏光合作用膜的氧的积累。

(c)限制电子传递的速度减慢了光合磷酸化和NADPH形成的速率,从而降低了CO2还原能力。

(d)当RuBisCo的活性受限制时,ATP和NADPH以很低的速率消耗,而ADP和NADP+作为光反应的底物利用性降低,电子载体被过度还原,光合色素可能最终被损坏。 (e)当无机磷酸的浓度被限制时,光合磷酸化的速率降低,跨膜质子梯度增加,最终减慢了电子传递的速率。

8、当绿藻的悬浮液在缺乏CO2的状况下受光照射,然后在黑暗中与CO2温,在短时间内,14CO2转化为14C-葡萄糖。这一观察对光合作用的二个阶段有什么意义?为什么在短时间后14CO2转化为14C-葡萄糖的反应会停止?

答:观察表明光反应阶段产生ATP和NADPH,并用于暗反应的CO2固定;暗反应的停

32

止是光反应合成的NADPH和ATP耗尽。

9、在不加ADP和Pi情况下,用光照射菠菜叶绿体,然后停止光照,加入ADP和Pi。ATP的合成只持续很短的一段时间,请解释这一观察。

答:在光照期间建立了跨膜的质子浓度梯度,当加入ADP和Pi后,受质子浓度梯度的驱动可以合成ATP,由于没有光照了,所以质子浓度梯度在短时间内就消失了。 10、 通过C4途径由CO2合成葡萄糖每分子CO2需要的ATP比RPP(C3)循环要多,解释为什么需要额外的能量。

答:C4植物依据存在于其维管束鞘细胞内的脱羧酶可以分为三个亚类。在C4植物的两个亚类中(含有NADP+-苹果酸酶的亚类和含有NAD+-苹果酸酶的亚类),一个分子的ATP被丙酮酸-磷酸二激酶催化裂解形成AMP和PPi(PPi经焦磷酸酶裂解成2Pi),所以每还原一分子CO2相当于消耗了2个额外的ATP。在C4植物的第三个亚类中(含有PEP羧酸激酶的亚类)每还原1分子CO2仅需要额外1分子ATP。因此采取C4途径的植物合成一分子葡萄糖与仅仅采用C3途径的植物相比至少多需要6分子ATP

脂代谢

1、比较脂肪酸氧化和合成的在以下几个方面的区别:(a)发生的部位 (b)酰基的载体

(c)氧化剂和还

原剂 (d)中间产物的立体化学 (e)降解和合成的方向 (f)酶体系的组织 (g)氧化时每次降解的碳单位和合成时使用的碳单位供体。 答:(a)氧化发生在线粒体;而合成发生在细胞质。(b)氧化使用辅酶A;合成用ACP。(c)氧化用NAD+和FAD,而合成用NADPH。(d)氧化是3-羟酰基CoA的L-异构体;而合成是D-异构体。(e)氧化时是羧基变甲基;合成时是甲基变羧基。(f)氧化用的酶是分立的,而合成用的酶组成一酶复合物。(g)氧化为乙酰CoA;合成为丙二酸单酰CoA。

2、在脂肪酸b-氧化的过程与柠檬酸循环中的部分反应过程类似。试写出这两个途径中的类似的反应过程。

答: 脂肪酸氧化的第一步类似于琥珀酸转化为延胡索酸;第二步类似于延胡索酸转化为苹果酸;第三步

类似于苹果酸转化为草酰乙酸。(方程式略)

3、当肝脏的b-氧化作用超过柠檬酸循环的容量时,则过量生成的乙酰CoA会形成酮体,即乙酰乙酸、D-b-羟丁酸和丙酮。这种情况会出现在严重的糖尿病患者,因为这些患者的组织不能利用葡萄糖,只好以氧化大量的脂肪酸来代替。尽管乙酰CoA没有毒性,但线粒体也必须将它转化成酮体,如果不能转换将出现什么问题?这种转换带来什么好处?

答:由于线粒体CoA库比较小,缺少CoA不能使β-氧化正常运作,所以CoA必须经由乙酰CoA形成酮体再循环生成。这可使β-氧化正常运作。

4、糖尿病患者一般都患有严重酮病。如果给她服用14C标记的乙酰CoA(乙酰基的两个碳都标记),那么她呼出的气体中是否含有14C标记的丙酮?说明理由。

答:糖尿病患者的呼吸中有可能含有14C标记的丙酮。标记的乙酰CoA进入体内的乙酰CoA库,其中一部分要转换成酮体进一步代谢,丙酮是其中的一种酮体,容易进入呼吸系统。

5、假如你必须食用鲸脂和海豹脂,其中几乎不含有碳水化合物。 (a)使用脂肪做为唯一能量的来源,会产生什么样的后果?

(b)如果饮食中不含葡萄糖,试问消耗奇数碳脂肪酸好还是偶数碳脂肪酸好? 答:(a)葡萄糖经酵解生成丙酮酸,丙酮酸是草酰乙酸的主要前体,如果饮食中不含葡萄糖,草酰乙酸的浓度下降,柠檬酸循环的速度将减慢(b)奇数,因为丙酸可以转换为琥珀酰CoA,它是柠檬酸循环的中间代谢物,可用于糖异生。

33

6、每一分子软脂酸(16碳)完全氧化为CO2和H2O净生成的能量可以使多少分子的葡萄糖转化为甘油醛-3-磷酸? 答:65分子葡萄糖。 7、用于合成脂肪酸的乙酰单位是在线粒体中经丙酮酸氧化脱羧生成乙酰CoA后经柠檬酸穿梭途径转运到细胞质的。

(a)写出将一个乙酰基由线粒体转运到细胞质中的总的方程式。 (b)每转运一个乙酰基消耗多少ATP? 答:(a)乙酰CoA(线粒体)+ATP+CoA(细胞质)=乙酰CoA(细胞质)+ADP+Pi+CoA(线粒体)(b)一个ATP。

氨基酸代谢

1、寄生在豆科植物根瘤中的细菌约消耗20%以上豆科植物所产生的ATP,为什么这些细菌要消耗这么大量的ATP。

答:根瘤菌与植物是共生关系,根瘤菌通过使大气中氮还原来提供氨离子,但在固氮过程中需要大量的ATP,这些ATP都是由植物供给的。

2、给动物喂食15N标记的天冬氨酸,很快就有许多带标记的氨基酸出现,解释此现象。 答: 在Asp转氨酶催化下标记的氨基由Asp转移到了Glu上,因为转氨反应是可逆的,并且许多转氨酶用Glu作为α-氨基的供体,所以15N-Glu中的15N原子很快进入到其它可以作为Glu-依赖型转氨酶的底物的氨基酸中,即出现在除了Lys和Thr之外的那些氨基酸中。

3、如果你的饮食中富含Ala但缺乏Asp,那么能否看到你缺乏Asp的症状呢?请解释。 答:看不到缺乏Asp的症状。因为富含Ala,它经转氨可生成丙酮酸,丙酮酸经羧化又可生成草酰乙酸,后者经转氨就可生成天冬氨酸。

4、大多数氨基酸的合成是多步反应的产物,但20种标准氨基酸中有3种可以通过中枢代谢途径中的糖类代谢物经简单转氨基合成。 (a)写出这三个转氨基反应的方程式。

(b)这些氨基酸中有一种也能直接通过还原氨基化合成,写出此反应的方程式。 答:(a)在相应转氨酶催化下,Glu、Ala和Asp分别由α-酮戊二酸、丙酮酸和草酰乙酸生成。

α-酮戊二酸+α-氨基酸=Glu+α-酮酸 丙酮酸+α-氨基酸=Ala+α-酮酸 草酰乙酸+α-氨基酸=Asp+α-酮酸

(b)Glu也可以由α-酮戊二酸通过Glu脱氢酶的作用而生成。 α-酮戊二酸+NH4++NAD(P)H+H+=Glu+H2O+NAD(P)+

5、冬季非洲爪蟾生活在水环境中,它们以氨的形式排出过量的氮;夏季当池溏干涸后,爪蟾钻入泥中,进入休眠状态。指出爪蟾在体眠期是如何改变其氮代谢以防止有毒的氨积累?

答:在夏眠时,爪蟾变为排尿型,即它可以利用尿循环的反应排除含氮废物。夏眠时,与尿循环有关的酶的活性大大增强了。

6、参与尿素循环的氨基酸有哪些?这些氨基酸都能用于蛋白质的生物合成吗?

答:鸟氨酸、瓜氨酸、精氨琥珀酸、精氨酸和天冬氨酸。只有精氨酸和天冬氨酸能用于蛋白质的生物合成。

7、如果给一只老鼠喂食含有15N标记的Ala,老鼠分泌出的尿素是否变成了15N标记的?如果是的话,尿素中的一个氨基被标记,还是两个氨基都被标记了?说明理由。 答:分泌的尿素是被15N标记了。两个氨基都被标记了。因为15N-Ala能够通过转氨使草酰乙酸接收氨基转换成15N-Asp,以及通过氧化脱氨生成游离的15NH4+,可以导致15N标记的氨甲酰磷酸的生成。由于尿素中的两个氨基分别来自氨甲酰磷酸和Asp,

34

所以尿素中的两个氨基就都是15N标记的了。

8、如果利用(a)一分子葡萄糖或(b)一分子软脂酸完全氧化成CO2和H2O净生成的ATP用于尿素的合成,可以分别合成出多少分子的尿素? 答:(a)9 (b)32

9、 如果一个成年猫在禁食一个晚上以后,喂以一餐不含精氨酸的复合氨基酸饮食。在2小时内,血中的氨浓度从正常的18μg/L增至140μg/L,此时猫表现出氨中毒的临床症状。对照组中喂以完全氨基酸饮食或以鸟氨酸取代精氨酸的氨基酸饮食,则没有不寻常的临床症状。

(a)这个实验中,为什么要先禁食一个晚上?

(b)是什么因素使实验组氨的浓度上升?为什么精氨酸缺乏会导致氨中毒?精氨酸是否是猫的必需氨基酸?

(c)为什么鸟氨酸能取代精氨酸?

答: (a)禁食导致低血糖,当喂以实验饮食时会导致生糖氨基酸的快速分解代谢。 (b)氧化脱氨导致氨浓度的升高,精氨酸(尿素循环中的中间代谢物)缺乏阻断了氨转化为尿素的通路,实验条件下无法合成足够的精氨酸。实验表明精氨酸对猫来说是必需氨基酸。

(c)鸟氨酸通过尿素循环可转化为精氨酸。

10、 在所有哺乳动物的肝脏中的转氨酶中天冬氨酸氨基转移酶的活性最高,为什么? 答: 引入到尿素中的第二个氨基是从Asp转移来的,而Asp是Glu经天冬氨酸氨基转移酶催化转氨给草酰乙酸生成的。以尿素排泄的氨有一半来自天冬氨酸氨基转移酶催化的反应,这使得该酶必须具有很高的活性。

核苷酸代谢

1、嘌呤和嘧啶碱基是真核生物的主要能源吗,为什么?

答:在真核生物中,嘌呤和嘧啶不是主要的能源。脂肪酸和糖中碳原子能够被氧化产生ATP,相比较而言含氮的嘌呤和嘧啶没有合适的产能途径。通常核苷酸降解可释放出碱基,但碱基又能通过补救途径重新生成核苷酸,碱基不能完全被降解。另外无论是在嘌呤降解成尿酸或氨的过程还是嘧啶降解的过程中都没有通过底物水平的磷酸化产生ATP。碱基中的低的C:N比使得它们是比较贫瘠的能源。然而在次黄嘌呤转变为尿酸的过程中生成的NADH也许能够通过氧化磷酸化间接产生ATP。

2、用两组人作一个实验,一组人的饮食主要是肉食,另一组人主要是米饭。哪一组人发生痛风病的可能性大?为什么?

答: 痛风是由于尿酸的非正常代谢引起的,尿酸是人体内嘌呤分解代谢的终产物,由于氨基酸是嘌呤和嘧啶合成的前体,所以食用富含蛋白质饮食有可能会导致过量尿酸的生成,引起痛风病。

3、从5-磷酸核糖开始合成一分子AMP需要多少能量(用ATP表示)?假设所有其它前体都存在。

答:需要7个ATP分子。合成磷酸核糖焦磷酸(PRPP)需要将一个焦磷酸基团从ATP转移到核糖-5-磷酸上去,在合成IMP途径的步骤1中该焦磷酸基团以PPi的形式释放出来并且被水解为2Pi,因而合计相当于消耗2个ATP。在步骤2,4,5和7中消耗4个ATP分子,在上述步骤中ATP转化为ADP和Pi。在IMP转化为AMP时,由腺苷琥珀酸合成酶催化的反应又另外消耗一个GTP。

4、为什么一种嘌呤和嘧啶生物合成的抑制剂往往可以用作抗癌药和/或抗病毒药? 答:因为许多癌细胞的特点是快速生长,需要供给大量的核苷酸。一旦嘌呤和嘧啶的生物合成受到抑制,癌细胞的生长就受到限制。所以抑制嘌呤和嘧啶生物合成的抑制剂可能就是一种抗癌药。由于病毒复制速度非常快,所以也会受到同样抑制剂的影响。

激 素

35

1、正常情况下,人肾上腺髓质以一定速度分泌肾上腺素,以维持循环的血液中的10-10M浓度。为了了解该浓度的含义,计算一个深2米的圆形游泳池的直径要多大才能使1克(大约一茶匙)的肾上腺素溶解后的浓度相当于血液中的浓度? 答:186米。

2、大多数激素在血液中的半衰期相当短。例如将放射性标记的胰岛素注入动物体内,30分钟内一半激素从血液中消失。

(a)循环的激素的快速失活的重要意义是什么?

(b)鉴于激素如此快的失活,那么在正常情况下,如何使循环中的激素保持恒定? (c)有机体是通过什么方式使循环中激素的水平改变的? 答: (a)失活提供了一种快速改变激素浓度的方式。(b)恒定的胰岛素水平是靠快速合成和降解维持的。(c)改变激素浓度的其它方式包括改变激素从贮存处释放的速度,转运的速度以及由非活性前体转换为活性的激素的速度。

3、激素可分为水溶性激素(如肾上腺素)和脂溶性激素(如固醇类激素)。大部分水溶性激素不进入到靶细胞里面,而是通过作用于细胞表面的受体发挥它的效应。但脂溶性激素不仅进入靶细胞,而且是在细胞核内发挥作用。两类激素作用的模式与它们的溶解性、受体位置有什么相关性?

答:水溶性激素不易穿过细胞膜,所以它与靶细胞表面的受体结合,击发细胞内的第二信使(如cAMP)形成,通过第二信使发挥作用。而由于脂溶性激素可以通过细胞膜,可以直接作用于靶分子或受体。

4、 在\"搏斗或逃逸\"时,肾上腺素的释放促进肝、心肌和骨骼肌中的糖原降解,在肝脏中糖原降解的终产物是葡萄糖,与此相反在骨骼肌中的终产物是丙酮酸。 (a)为什么糖原在这两种组织中会生成不同的终产物?

(b)有机体在\"战斗或逃逸\"时,具有这两种不同的糖原降解途径的优越性是什么? 答:(a)心肌和骨骼肌缺少葡萄糖-6-磷酸磷酸酶,所以糖原降解生成的葡萄糖-6-磷酸都进入到酵解途径,在缺氧条件下经丙酮酸转化为乳酸。(b)磷酸化的中间产物不能从细胞中逃掉,因为带电的分子不能穿过细胞膜。在\"搏斗或逃逸\"时为了使肌肉具有活力需要高浓度的酵解的前体物质。另一方面,肝应当释放葡萄糖以便维持血糖水平。葡萄糖可以由葡萄糖-6-磷酸形成,然后从肝细胞输送到血液中。

5、有些胰脏的恶性肿瘤会使胰腺的β细胞过度制造胰岛素。患者摇摆又颤抖、软弱又疲倦、流汗并有饥饿感。

(a)高胰岛素症对肝脏的糖、氨基酸以及脂的代谢有什么影响? (b)所观察到的症状的起因是什么? 答: (a)血糖被肝脏过量的利用导致低血糖;氨基酸和脂肪酸的分解代谢下降。(b)少量的循环燃料都用于合成ATP了,由于葡萄糖是脑的主要燃料,低血糖导致脑损伤,所以出现那么多症状。

6、甲状腺素与基础代谢的速率有密切关系,能给出过量的甲状腺素的肝组织表现出氧的消耗速率增加,以及热的输出增加(生热作用),但组织内的ATP浓度正常。对于甲状腺素的生热作用有不同的解释。一种说法是过量的甲状腺素使得线粒体内的氧化磷酸化解耦联。这能够说明上述观察吗?另一种解释是生热是由于甲状腺素刺激的组织其ATP利用的速率增加的结果,这个解释合理吗?为什么?

答: 甲状腺素的作用象个氧化磷酸化的解耦联剂。解耦联剂降低P/O比,因此组织应当增加呼吸来满足正常的ATP需求。生热也可能是由于甲状腺素刺激的组织其ATP利用的速率增加的结果,因为增加ATP的需求是通过增加氧化磷酸化以及呼吸来满足的。

DNA复制

1、 果蝇的整个基因组包含1.65×108个碱基对,如果复制仅靠单一一个复制叉复制,复

36

制速度为每秒30个碱基对,计算整个基因组至少需要多少时间? (a) 复制在一个双向起点开始。

(b) 复制在2000个双向起点处起始。

(c) 在早期胚胎阶段速度最快,只需5至6分钟,此时必需的起始点至少要多少? 答:(a)首先你必须假设全部基因组是一个大的线型的DNA分子(事实并非如此,但这样的假设使问题易于解答),同时假设复制的起始区域在该染色体的中部,因为复制叉向相反的方向移动,每秒钟将会复制60个碱基时,复制全部基因组所需要的时间为:1.65×108碱基对/60碱基对S-1 =2.75×106S=764h=32days

(b)假设2000个双向复制起点,等距离地沿DNA分子分布,同时在所有的起点同时开始复制,于是每一个复制叉复制了最大量的DNA,该速度为:2000×2×30碱基对/秒=1.2×105碱基对/秒。 复制全部基因组所需要的时间为:1.65×108碱基对/1.2×105碱基对S-1 =1375s=23min

(c)再次假设原点等同分布,所有原点同时开始复制所需的速度为:1.65×108碱基对/300s =5.5×105碱基对S-1由于两个复制叉移动的总速度为60碱基对/秒。5.5×105碱基对S-1/60碱基对S-1=9170(起始点)所以为了在5min内完成复制,大约需要9170个起始点。

2、DNA复制复合体需要一系列的蛋白分子以便使复制叉移动,如果大肠杆菌在体外进行DNA复制至少

需要哪些组分?

答: (a)至少需要DNA聚合酶III、解旋酶、SSB和引发酶。在体内需要拓扑异构酶。

3、 某细菌的染色体是环状的双链DNA分子,有5.2×106个碱基对。

(a)复制叉的移动速度是每秒1000个核苷酸,计算复制染色体所需的时间。

(b)在最适条件下,细菌繁殖一代仅需25分钟。如果DNA复制最快速度是每秒1000个核基酸,且染色

体只含有一个复制起始点,解释为什么细胞能分裂得这么快。

答:(a)在复制原点形成两个复制叉,复制叉以相反的方向移动直到它们在原点对面的某一点相遇为止,因而每个复制体复制基因组的一半(2.6×106碱基对),在每一个复制叉上,以1000个核苷酸/秒的速率合成两条新链(前导链和滞后链)(2000个核苷酸/秒等于1000个碱基对/秒)。所以复制全部的染色体需要2.6×106/1000 =2600秒 =43分20秒。

(b)尽管仅仅只有一个原点(O),但在前一个复制叉到达终点位置之前复制可以反复起始。因而在每一个双链DNA分子上存在着2个以上的复制叉。虽然复制一个染色体仍旧需要大约43分钟,但是由于起始的速率加快,完全复制一个染色体显得间隔更短了。

4、 一条DNA有105个核苷酸残基,它的碱基组成为:A 21%,G 29%, C 29%,及T 21%,经DNA

聚合酶复制得互补链。生成的双螺旋DNA为RNA聚合酶的模板,转录后得到有相同数目残基的新RNA链。

(a)试确定新合成的RNA的碱基组成。

(b)若RNA聚合酶从DNA新链仅转录2000碱基便停止。那么所得到的新的RNA的碱基组成如何? 答:(a)A,21%;U,21%;C,29%;G,29%(b)新链组成和原链可能一样也可能不一样

5、 与RNA分子相比,为什么DNA分子更适合用于贮存遗传信息?

答: 因为DNA整个都是双链结构,但RNA或是单核苷酸链,或是具有局部双螺旋

37

的单核苷酸链。

双链结构使得生物体通过两条互补、反向平行的链精确地进行DNA复制。而RNA的结构作不到这一点。

6、 计算DNA聚合酶以环形φX174 DNA的两条互补链的等摩尔混合物为模板复制出的所有DNA的碱基

组成?假设模板DNA的一条链的碱基组成是A 24.7%,G 24.1%, C 18.5%,及T 32.7%,回答此问题,需要有什么假设?

答:以模板链合成的新链:A,32.7%、G,18.5%、 C,24.1%、T,24.7%;以模板链的互补链合成的新链:A,24.7%、G, 24.1%、 C,18.5%、T,32.7%;两条新链的DNA组成:A,28.7%、G, 21.3%、 C,21.3%、T,28.7%。假定两条模板链合成均完成。

7、 (a)体外DNA合成反应中加入单链结合蛋白(SSB)通常会增加DNA的产量,解释原 (b)合成反应一般在体外65℃条件下进行,通常采用生长在高温环境中的细菌中分离出的DNA多聚酶, 这有何好处?

答: (a)用于DNA体外合成的单链DNA模板可能形成发夹环那样的二级结构。SSB通过与单链模板的结合阻止了双链结构的形成。在SSB存在下使DNA成为DNA聚合酶的一个很好的底物。

(b)在高温条件下体外合成DNA的产量会增加,因为在模板中形成二级结构的可能性变小了。65℃温度是足以阻止二级结构的形成但是还没有高到使新合成的DNA形成的双链区变性的程度。来自生长于高温条件下的细菌的DNA聚合酶可应用于上述反应,因为在65℃它们是具有活性的,而在这个温度下来自于其它细菌的DNA聚合酶都失活了。 8、 设计的Meselson-Stahl实验是用来确定DNA复制是半保留复制、还是全保留复制等。在该实验中,

E.Coli首先在含有15NH4Cl的介质中培养一代,然后转移到含有14NH4Cl的介质中培养。如果复制是按(a)半保留复制、(b)全保留复制进行,对于每种情况,都请画一个复制进行两轮的复制图,该复制图是经平衡密度梯度离心形成的。

答: 一轮复制之后,半保留复制产生的DNA离心时将产生一条带(14N-DNA,15N-DNA),相反全保留复制将会产生两条不同的带(14N-DNA,14N-DNA和15N-DNA,15N-DNA),经过两轮之后,半保留复制将产生两条不同的带(14N-DNA,14N-DNA和14N-DNA,15N-DNA)。 9、 紫外线照射后暴露于可见光中的细胞,其复活率为什么比紫外线照射后置于黑暗中的细胞高得多? 答:紫外线可以通过引起T残基的二聚化而破坏DNA,修复T二聚体的一中机制是由酶催化的光反

应,该反应由光复活酶催化的,该酶利用来自可见光的能量切断该二聚体并且修复该DNA,所以细 胞在紫外照射后暴露于可见光下比细胞保持在黑暗状态下更容易修复DNA。 RNA合成

1、为什么RNA易被碱水解,而DNA不容易被碱水解?

答:因为RNA含有的2ˊ-OH起到分子内催化剂作用,水解能形成中间产物2ˊ,3ˊ-环状中间产物,而DNA不含2ˊ-OH。

2、下列是DNA的一段碱基序列。AGCTTGCAACGTTGCATTAG

(a)写出DNA聚合酶以上面的DNA片段为模板,复制出的DNA碱基序列。

(b)以(a)中复制出的DNA碱基序列为模板,在RNA聚合酶催化下,转录出的mRNA的碱基序列。

答: (a)5ˊ-CTAATGCAACGTTGCAAGCT-3ˊ

38

(b)5ˊ-AGCUUGCAACGUUGCAUUAG-3ˊ

3、3ˊ-脱氧腺苷-5ˊ-三磷酸是ATP的类似物,假设它相似到不能被RNA聚合酶识别。如果在RNA转录

时细胞中存在少量的该物质,会有什么现象?

答:如果3ˊ-脱氧腺苷-5ˊ-三磷酸被RNA聚合酶错当成ATP,它将会进入到生长中的RNA链,然而

因为3ˊ-脱氧腺苷-5ˊ-三磷酸缺少一个3ˊ-羟基基团,在聚合反应中它不能与下一个核苷三磷酸反应,因而在转录过程中将3ˊ-脱氧腺苷-5ˊ-三磷酸引入将会导致提前链终止,同时如果该药品大量存在时细胞将死亡。

4、 与DNA聚合酶不同,RNA聚合酶没有校正活性,试解释为什么缺少校正功能对细胞并无害处。

答:RNA聚合酶缺少校正活性,从而使转录错误率远远高于DNA复制的错误率,但是错误的RNA分

子将不可能影响细胞的生存,因为从一个基因合成的RNA的绝大多数拷贝是正常的。就mRNA分子来说,按照含有错误的mRNA转录本合成的错误的蛋白质的数量只占所合成蛋白质总数的百分比很小,另一方面,在转录过程中生成的错误可以很快去除,因为大多数的mRNA分子的半衰期很短。

5、 一个逆转录病毒的单链RNA致癌基因的碱基组成(mol%)为:A,15;U,25;G,25;C,35,对

应于该致癌基因的双链DNA片段的碱基组成是多少? 答: [A]=[T]=20mol%。[G]=[C]=30mol%。

6、 自我拼接反应和RNA作为催化剂的反应之间的区别是什么?

答:四膜虫的rRNA的初始转录产物经过一个自剪切反应失去了它的间插序列。因为在这一反应中转

录本是被永久地修饰了,因此它不是一个真正的催化剂。

核糖核酸酶P的RNA组分能够切除tRNA前体分子,并且在反应结束时仍旧保持不变,因而它称得上是一个真正的催化剂。 7、 真核细胞mRNA加工过程包括哪四步?

答: (1)5ˊ加帽、3ˊ聚腺苷酸化、RNA剪接和转运出核。 5ˊ加帽和3ˊ聚腺苷酸化在剪接和转 运之前。

8、 逆转录酶的发现和利用是现代分子生物学的革命,其重要意义体现在? 答:导致了cDNA克隆生物技术的诞生。能够由克隆的cDNA表达蛋白。

蛋白质合成

1、tRNA在蛋白合成过程中被称为\"适配器\"分子,原因是什么?

答: tRNA具有将mRNA序列翻译成相应的蛋白序列的作用。tRNA既能与mRNA结合,也能与氨基酸结合。

2、如果遗传密码是四联密码子而不是三联密码子,而且tRNA反密码子的5ˊ端两个核苷酸是\"摆动\"位置,所需参与蛋白合成的tRNA的数目是否会变化?

答: 与三联密码子情况下同样数目的tRNA(30~50 tRNA)就足够了。因为反密码子的头两个位置为摆动位置,密码子中第4个核苷酸没有特别的贡献。 3、AUG和UAG是蛋白合成中特定的起始和终止密码,如下所示的mRNA中什么样的开放阅读框才能编码一个短肽?写出该短肽的氨基酸序列。5ˊ-UUAUGAAUGUACCGUGGUAGUU-3ˊ

答:只有阅读框3(从第3个核苷酸开始读码)才能编码一个短肽。Met-Asn-Val-Pro-Trp

39

4、细菌的基因组通常含有多个rRNA基因拷贝,它们能迅速地转录以生产大量rRNA装配成核糖体。相对比而言,编码核糖体蛋白的基因只有一份拷贝,试解释rRNA基因和核糖体蛋白基因数量的差别。

答:每一个rRNA基因的转录本是一个rRNA分子,它被组装入核糖体中,因而需要多考贝的rRNA基因来装配细胞所需要的大量的核糖体。相反每一个核糖体蛋白质基因的转录本是一个mRNA它可以被翻译许多次,因为从RNA到蛋白质的这种放大作用,所以用于合成核糖体蛋白质的基因的需求比对rRNA基因的需求少。

5、DNA中的点突变(一个碱基被另一个碱基取代)可能导致一个氨基酸被另一个氨基酸替换。但在某些情况下,由于密码子的简并性,基因编码的氨基酸序列也可能不会改变。一种细菌生产的胞外蛋白酶在其活性位点上(―Gly―Leu―Cys―Arg―)有一个半胱氨酸残基。紫外线照射过后,分离到两个突变菌株。菌株1生产以Ser取代了活性部位Cys的无活性酶(―Gly―Leu―Ser―Arg―));而在菌株2内,合成了一条C

末端结束在活性部位内的以―Gly―Leu―COO结尾的截断了的肽链,指出在每一种菌株中可能发生的突变。

答: Cys密码子(UGU,UGC)与几个Ser密码子(AGU、AGC或UCU UCC)只有一个碱基的差别。单独的一个点突变能够将Cys转变为Ser, 例如UGU(Cys)→AGU(Ser)或UGC→AGC,基因中的突变可以是一个A/T碱基对取代T/A碱基对或者是C/G取代G/C。 第二个蛋白质被提前终止,因而该突变的基因在Leu密码子之后含有一个终止密码子,假设只有一个核苷酸发生了改变,有下述三种可能性。 Ser→STOP TCA → TGA TCA → TAA TCG → TAG

6、一双螺旋DNA的模板链中一段序列如下: CTTAACACCCCTGACTTCGCGCCGTCG (a) 写出转录出的mRNA核苷酸序列?

(b) 写出从5ˊ开始的该转录mRNA序列所对应的多肽的氨基酸序列?

(c) 假设此DNA的另一条链被转录和翻译,所得的氨基酸序列会与(b)中的一样吗?(b)与(c)得出的答案在生物学上有什么意义?

答:(a)5’-CGACGGCGCGAAGUCAGGGGUGUUAAG-3’ (b)

Arg-Arg-Arg-Glu-Val-Arg-Gly-Val-Lys (c)不一样,DNA互补的双螺旋反平行链的两个方向碱基顺序是不同的,RNA的转录是以其中特殊的一条为模板,所以RNA聚合酶就必须识别正确的链为模板

基因调控

1、IPTG诱导β半乳糖苷酶活性导致什么结果?

答: IPTG结合并抑制lacI基因产物,即Lac阻遏蛋白。

2、E.coli细胞能在不同的碳源上生长,当细菌在以下物质存在条件下生长时,lac操纵子的转录速率如何? (a)乳糖和葡萄糖 (b)葡萄糖 (c)乳糖

答: (a)当葡萄糖和乳糖同时存在时,lac操纵子以很低的水平进行转录。因为该阻遏物与别乳糖(乳糖的一个异构体)形成了一个复合物,因为别乳糖-阻遏物复合物不能与lac操纵子中启动子区结合,从而使该阻遏物不能阻止转录的起始。

(b)缺少乳糖的条件下,将不会有别乳糖生成。因而该lac阻遏蛋白与靠近lac操纵子启动子区的部位,从而阻止了转录。

(c)当乳糖作为唯一的碳源时,该lac操纵子以最大的速率转录,在别乳糖存在的条件下,转录也是可能发生的,因为lac阻遏蛋白不能与lac操纵子的启动子区城结合,同样在缺少葡萄糖的条件下,转录速率增加,原因是cAMP产物增加,从而有更多的CRP-cAMP可用来结合lac操纵子的启动子区城。缺少阻遏物和通过CRP-cAMP的

40

作用使转录起始增强,结果使细胞在乳糖作为可利用的唯一碳源时合成大量的维持生长所需要的酶。

3、在araBAD转录过程中,阿拉伯糖的作用是什么?

答:通过改变Arac的DNA结合特性引起去阻遏。AraC-阿拉伯糖复合物与AraC-AraC复合物所结合的DNA序列不同。

4、E.coli生长在以葡萄糖为唯一碳源的介质中,突然加入色氨酸,细胞继续生长,每30分钟分裂一次。定性地描述在下列条件下细胞内的色氨酸合成酶的活性的量上如何变化?

(a)该trp mRNA稳定。

(b)该trp mRNA快速降解,但色氨酸合成酶稳定。

(c)该trp mRNA和色氨酸合成酶都降解,而且比正常条件下快。 答:(a)尽管存在Trp,但色氨酸合成酶仍维持高水平。(b)仍维持高水平。(c)水平快速下降,以防止Trp的浪费合成。 5、色氨酸操纵子的衰减作用导致什么结果?

答: RNA聚合酶从色氨酸操纵子DNA序列上的解离。在大多数生长条件下,Trp-tRNATrp是丰富的;有利于通过弱化作用进行的转录终止。 6、转录因子二聚体之间的相互作用对转录调节的组合机制的贡献是什

答:允许三个相关蛋白结合成六个不同的效应元件。例如蛋白A、B和C可以结合被AA、AB、AC、BB、BC和CC识别的效应元件。 7、

第三部分 各种模拟试题及考试题

四川大学生物化学蛋白质部分考试题

一.填空题 1.蛋白质多肽链中的肽键是通过一个氨基酸的_____基和另一氨基酸的_____基连接而形成的。

2.大多数蛋白质中氮的含量较恒定,平均为___%,如测得1克样品含氮量为10mg,则蛋白质含量为____%。

3.在20种氨基酸中,酸性氨基酸有_________和________2种,具有羟基的氨基酸是________和_________,能形成二硫键的氨基酸是__________.

4.蛋白质中的_________、___________和__________3种氨基酸具有紫外吸收特性,因而使蛋白质在280nm处有最大吸收值。

5.精氨酸的pI值为10.76,将其溶于pH7的缓冲液中,并置于电场中,则精氨酸应向电场的_______方向移动。

6.组成蛋白质的20种氨基酸中,含有咪唑环的氨基酸是________,含硫的氨基酸有_________和___________。

7.蛋白质的二级结构最基本的有两种类型,它们是_____________和______________。 8.α-螺旋结构是由同一肽链的_______和 ________间的___键维持的,螺距为______,每圈螺旋含_______个氨基酸残基,每个氨基酸残基沿轴上升高度为_________。天然蛋白质分子中的α-螺旋大都属于___手螺旋。

9.在蛋白质的α-螺旋结构中,在环状氨基酸________存在处局部螺旋结构中断。 10.球状蛋白质中有_____侧链的氨基酸残基常位于分子表面而与水结合,而有_______侧链的氨基酸位于分子的内部。

11.氨基酸与茚三酮发生氧化脱羧脱氨反应生成______色化合物,而________与茚三酮

41

反应生成黄色化合物。

12.维持蛋白质的一级结构的化学键有_______和_______;维持二级结构靠________键;维持三级结构和四级结构靠_________键,其中包括________、________、________和_________.

13.稳定蛋白质胶体的因素是__________________和______________________。

14.GSH的中文名称是____________,它的活性基团是__________,它的生化功能是____________________。

15.加入低浓度的中性盐可使蛋白质溶解度________,这种现象称为________,而加入高浓度的中性盐,当达到一定的盐饱和度时,可使蛋白质的溶解度______并__________,这种现象称为_______,蛋白质的这种性质常用于_____________。

16.用电泳方法分离蛋白质的原理,是在一定的pH条件下,不同蛋白质的________、_________和___________不同,因而在电场中移动的_______和_______不同,从而使蛋白质得到分离。

17.氨基酸处于等电状态时,主要是以________形式存在,此时它的溶解度最小。 18.鉴定蛋白质多肽链氨基末端常用的方法有__________和_______________。 19.测定蛋白质分子量的方法有_________、____________和__________________。 20.今有甲、乙、丙三种蛋白质,它们的等电点分别为8.0、4.5和10.0,当在pH8.0缓冲液中,它们在电场中电泳的情况为:甲_______,乙_______,丙________。

21.当氨基酸溶液的pH=pI时,氨基酸以_____离子形式存在,当pH>pI时,氨基酸以_______离子形式存在。

22.谷氨酸的pK1(α-COOH)=2.19, pK2 (α-NH+3 ) = 9.67, pKR(R基)= 4.25,谷氨酸的等电点为__________。

23.天然蛋白质中的α—螺旋结构,其主链上所有的羰基氧与亚氨基氢都参与了链内_____键的形成,因此构象相当稳定。 24.将分子量分别为a(90 000)、b(45 000)、c(110 000)的三种蛋白质混合溶液进行凝胶过滤层析,它们被洗脱下来的先后顺序是_____________。

25.肌红蛋白的含铁量为0.34%,其最小分子量是______.血红蛋白的含铁量也是0.34%,但每分子含有4个铁原子,血红蛋白的分子量是________.

26.一个α-螺旋片段含有180个氨基酸残基,该片段中有_____圈螺旋?该α-螺旋片段的轴长为_____. 二.选择题

1.在生理pH条件下,下列哪种氨基酸带正电荷?

A.丙氨酸 B.酪氨酸 C.赖氨酸 D.蛋氨酸 E.异亮氨酸 2.下列氨基酸中哪一种是非必需氨基酸?

A.亮氨酸 B.酪氨酸 C.赖氨酸 D.蛋氨酸 E.苏氨酸 3.蛋白质的组成成分中,在280nm处有最大吸收值的最主要成分是:

A.酪氨酸的酚环 B.半胱氨酸的硫原子 C.肽键 D.苯丙氨酸 4.下列4种氨基酸中哪个有碱性侧链?

A.脯氨酸 B.苯丙氨酸 C.异亮氨酸 D.赖氨酸 5.下列哪种氨基酸属于亚氨基酸?

A.丝氨酸 B.脯氨酸 C.亮氨酸 D.组氨酸 6.下列哪一项不是蛋白质α-螺旋结构的特点?

A.天然蛋白质多为右手螺旋 B.肽链平面充分伸展

C.每隔3.6个氨基酸螺旋上升一圈。 D.每个氨基酸残基上升高度为0.15nm.

42

7.下列哪一项不是蛋白质的性质之一?

A.处于等电状态时溶解度最小 B.加入少量中性盐溶解度增加 C.变性蛋白质的溶解度增加 D.有紫外吸收特性 8.下列氨基酸中哪一种不具有旋光性?

A.Leu B.Ala C.Gly D.Ser E.Val 9.在下列检测蛋白质的方法中,哪一种取决于完整的肽链?

A.凯氏定氮法 B.双缩尿反应 C.紫外吸收法 D.茚三酮法 10.下列哪种酶作用于由碱性氨基酸的羧基形成的肽键?

A.糜蛋白酶 B.羧肽酶 C.氨肽酶 D.胰蛋白酶 11.下列有关蛋白质的叙述哪项是正确的?

A.蛋白质分子的净电荷为零时的pH值是它的等电点 B.大多数蛋白质在含有中性盐的溶液中会沉淀析出

C.由于蛋白质在等电点时溶解度最大,所以沉淀蛋白质时应远离等电点 D.以上各项均不正确

12.下列关于蛋白质结构的叙述,哪一项是错误的?

A.氨基酸的疏水侧链很少埋在分子的中心部位 B.电荷的氨基酸侧链常在分子的外侧,面向水相

C.白质的一级结构在决定高级结构方面是重要因素之一 D.白质的空间结构主要靠次级键维持

13.列哪些因素妨碍蛋白质形成α-螺旋结构?

A.脯氨酸的存在 B.氨基酸残基的大的支链 C.性氨基酸的相邻存在 D.性氨基酸的相邻存在 E.以上各项都是 14.于β-折叠片的叙述,下列哪项是错误的?

A.β-折叠片的肽链处于曲折的伸展状态 B.的结构是借助于链内氢键稳定的 C.有的β-折叠片结构都是通过几段肽链平行排列而形成的 D.基酸之间的轴距为0.35nm

15.持蛋白质二级结构稳定的主要作用力是:

A.盐键 B.疏水键 C.氢键 D.二硫键 16.维持蛋白质三级结构稳定的因素是:

A.肽键 B.二硫键 C.离子键 D.氢键 E.次级键 17.凝胶过滤法分离蛋白质时,从层析柱上先被洗脱下来的是:

A.分子量大的 B.分子量小的 C.电荷多的 D.带电荷少的 18. 下列哪项与蛋白质的变性无关?

A. 肽键断裂 B.氢键被破坏 C.离子键被破坏 D.疏水键被破坏 19.蛋白质空间构象的特征主要取决于下列哪一项? A.多肽链中氨基酸的排列顺序 B.次级键 C.链内及链间的二硫键 D.温度及pH 20.下列哪个性质是氨基酸和蛋白质所共有的?

A.胶体性质 B.两性性质 C.沉淀反应 D.变性性质 E.双缩脲反应 21.氨基酸在等电点时具有的特点是:

A.不带正电荷 B.不带负电荷 C.A和B D.溶解度最大 E.在电场中不泳动

22.蛋白质的一级结构是指:

A.蛋白质氨基酸的种类和数目 B.蛋白质中氨基酸的排列顺序

43

C.蛋白质分子中多肽链的折叠和盘绕 D.包括A,B和C 三.是非判断题

( ) 1.氨基酸与茚三酮反应都产生蓝紫色化合物。

( ) 2.因为羧基碳和亚氨基氮之间的部分双键性质,所以肽键不能自由旋转。 ( ) 3.所有的蛋白质都有酶活性。

( ) 4.α-碳和羧基碳之间的键不能自由旋转。

( ) 5.多数氨基酸有D-和L-两种不同构型,而构型的改变涉及共价键的破裂。 ( ) 6.所有氨基酸都具有旋光性。

( ) 7.构成蛋白质的20种氨基酸都是必需氨基酸。

( ) 8.蛋白质多肽链中氨基酸的排列顺序在很大程度上决定了它的构象。 ( ) 9.一氨基一羧基氨基酸的pI为中性,因为-COOH和-NH2 的解离度相同。 ( ) 10.蛋白质的变性是蛋白质立体结构的破坏,因此涉及肽键的断裂。 ( ) 11.蛋白质是生物大分子,但并不都具有四级结构。

( ) 12.血红蛋白和肌红蛋白都是氧的载体,前者是一个典型的变构蛋白,在与氧结合过程中呈现变构效应,而后者却不是。

( ) 13..用FDNB法和Edman降解法测定蛋白质多肽链N-端氨基酸的原理是相同的。 ( ) 14.并非所有构成蛋白质的20种氨基酸的α-碳原子上都有一个自由羧基和一个自由氨基。

( ) 15.蛋白质是两性电解质,它的酸碱性质主要取决于肽链上可解离的R基团。 ( ) 16.在具有四级结构的蛋白质分子中,每个具有三级结构的多肽链是一个亚基。 ( ) 17.所有的肽和蛋白质都能和硫酸铜的碱性溶液发生双缩尿反应。

( ) 18.一个蛋白质分子中有两个半胱氨酸存在时,它们之间可以形成两个二硫键。 ( ) 19.盐析法可使蛋白质沉淀,但不引起变性,所以盐析法常用于蛋白质的分离制备。 ( ) 20.蛋白质的空间结构就是它的三级结构。

( ) 21.维持蛋白质三级结构最重要的作用力是氢键。 ( )22.具有四级结构的蛋白质,它的每个亚基单独存在时仍能保存蛋白质原有的生物活性。

( )23.变性蛋白质的溶解度降低,是由于中和了蛋白质分子表面的电荷及破 坏了外层的水膜所引起的。 ( )24.蛋白质二级结构的稳定性是靠链内氢键维持的,肽链上每个肽键都参与氢键的形成。

四.问答题

1.什么是蛋白质的一级结构?为什么说蛋白质的一级结构决定其空间结构? 2.什么是蛋白质的空间结构?蛋白质的空间结构与其生物功能有何关系? 3.蛋白质的α—螺旋结构有何特点? 4.蛋白质的β—折叠结构有何特点?

5.举例说明蛋白质的结构与其功能之间的关系。

6.什么是蛋白质的变性作用和复性作用?蛋白质变性后哪些性质会发生改变? 7.简述蛋白质变性作用的机制。 8.蛋白质有哪些重要功能 9.下列试剂和酶常用于蛋白质化学的研究中:CNBr、异硫氰酸苯酯、丹黄酰氯、脲、6mol/L HCl、β-巯基乙醇、水合茚三酮、过甲酸、胰蛋白酶、胰凝乳蛋白酶。其中哪一个最适合完成以下各项任务?

(1)测定小肽的氨基酸序列。

44

(2)鉴定肽的氨基末端残基。

(3)不含二硫键的蛋白质的可逆变性;如有二硫键存在时还需加什么试剂? (4)在芳香族氨基酸残基羧基侧水解肽键。 (4)在蛋氨酸残基羧基侧水解肽键。

(5)在赖氨酸和精氨酸残基羧基侧水解肽键。 10.根据蛋白质一级氨基酸序列可以预测蛋白质的空间结构。假设有下列氨基酸序列(如图):

1 5 10 15

Ile-Ala-His-Thr-Tyr-Gly-Pro-Glu-Ala-Ala-Met-Cys-Lys-Try-Glu-Ala-Gln- 20 25 27

Pro-Asp-Gly-Met-Glu-Cys-Ala-Phe-His-Arg

(1)预测在该序列的哪一部位可能会出弯或β-转角。 (2)何处可能形成链内二硫键?

(3)假设该序列只是大的球蛋白的一部分,下面氨基酸残基中哪些可能分布在蛋白的外表面,哪些分布在内部?

天冬氨酸;异亮氨酸;苏氨酸;缬氨酸;谷氨酰胺;赖氨酸 参考答案:

(一)名词解释

1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值,用符号pI表示。

4.稀有氨基酸:指存在于蛋白质中的20种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。

5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。

6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。

7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。 8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。

9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。

10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

12.氢键:指负电性很强的氧原子或氮原子与N-H或O-H的氢原子间的相互吸引力。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。

45

15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏水侧链避开水相而相互聚集而形成的作用力。

17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。

19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。

20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。

21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。

22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 23.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。 24.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 (二)填空题 1. 氨;羧基; 2. 16 ;6.25

3. 谷氨酸;天冬氨酸;丝氨酸;苏氨酸 4. 苯丙氨酸;酪氨酸;色氨酸;紫外吸收 5. 负极

6. 组氨酸;半胱氨酸;蛋氨酸 7. α-螺旋结构;β-折叠结构

8. C=O;N=H;氢;0.54nm; 3.6;0.15nm;右 9. 脯氨酸;羟脯氨酸 10.极性;疏水性 11.蓝紫色;脯氨酸

12.肽键;二硫键;氢键;次级键;氢键;离子键;疏水键;范德华力 13.表面的水化膜;同性电荷 14.谷胱甘肽;巯基

15.增加;盐溶;减小;沉淀析出;盐析;蛋白质分离 16.带电荷量;分子大小;分子形状;方向;速率 17.两性离子;最小

18.FDNB法(2,4-二硝基氟苯法);Edman降解法(苯异硫氢酸酯法) 19.沉降法;凝胶过滤法;SDS-聚丙烯酰胺凝胶电泳法(SDS-PAGE法) 20.不动;向正极移动;向负极移动; 21.两性离子;负; 22.3.22 23.氢键; 24.C;a;b

46

25.16 672; 66 687; 26.50圈;27nm (三) 选择题

1.D:5种氨基酸中只有赖氨酸为碱性氨基酸,其等电点为9.74,大于生理pH值,所以带正电荷。

2.B:人(或哺乳动物)的必需氨基酸包括赖氨酸、色氨酸、甲硫氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苏氨酸8种,酪氨酸不是必需氨基酸。

3.A:酪氨酸和苯丙氨酸在280nm处的克分子消光系数分别为540何120,所以酪氨酸比苯丙氨酸有较大吸收,而且大多数蛋白质中都含有酪氨酸。肽键的最大吸收在215nm,半胱氨酸的硫原子在280nm和215nm均无明显吸收。

4.D:在此4种氨基酸中,只有赖氨酸的R基团可接受氢质子,作为碱,而其它3种氨基酸均无可解离的R侧链。

5.B:氨基酸的α-碳上连接的是亚氨基而不是氨基,所以实际上属于一种亚氨基酸,而其它氨基酸的α-碳上都连接有氨基,是氨基酸。

6.B:天然蛋白质的α-螺旋结构的特点是,肽链围绕中心轴旋转形成螺旋结构,而不是充分伸展的结构。另外在每个螺旋中含有3.6个氨基酸残基,螺距为0.54nm,每个氨基酸残基上升高度为0.15nm,所以B不是α-螺旋结构的特点。

7.C:蛋白质处于等电点时,净电荷为零,失去蛋白质分子表面的同性电荷互相排斥的稳定因素,此时溶解度最小;加入少量中性盐可增加蛋白质的溶解度,即盐溶现象;因为蛋白质中含有酪氨酸、苯丙氨酸和色氨酸,所以具有紫外吸收特性;变性蛋白质的溶解度减小而不是增加,因为蛋白质变性后,近似于球状的空间构象被破坏,变成松散的结构,原来处于分子内部的疏水性氨基酸侧链暴露于分子表面,减小了与水分子的作用,从而使蛋白质溶解度减小并沉淀。

8.C:甘氨酸的α-碳原子连接的4个原子和基团中有2个是氢原子,所以不是不对称碳原子,没有立体异构体,所以不具有旋光性。

9.B:双缩脲反应是指含有两个或两个以上肽键的化合物(肽及蛋白质)与稀硫酸铜的碱性溶液反应生成紫色(或青紫色)化合物的反应,产生颜色的深浅与蛋白质的含量成正比,所以可用于蛋白质的定量测定。茚三酮反应是氨基酸的游离的α-NH与茚三酮之间的反应;凯氏定氮法是测定蛋白质消化后产生的氨;紫外吸收法是通过测定蛋白质的紫外消光值定量测定蛋白质的方法,因为大多数蛋白质都含有酪氨酸,有些还含有色氨酸或苯丙氨酸,这三种氨基酸具有紫外吸收特性,所以紫外吸收值与蛋白质含量成正比。 10.D:靡蛋白酶即胰凝乳蛋白酶作用于酪氨酸、色氨酸和苯丙氨酸的羧基参与形成的肽键;羧肽酶是从肽链的羧基端开始水解肽键的外肽酶;氨肽酶是从肽链的氨基端开始水解肽键的外肽酶;胰蛋白酶可以专一地水解碱性氨基酸的羧基参与形成的肽键。

11.A:蛋白质的等电点是指蛋白质分子内的正电荷桌能总数与负电荷总数相等时的pH值。蛋白质盐析的条件是加入足量的中性盐,如果加入少量中性盐不但不会使蛋白质沉淀析出反而会增加其溶解度,即盐溶。在等电点时,蛋白质的净电荷为零,分子间的净电斥力最小,所以溶解度最小,在溶液中易于沉淀,所以通常沉淀蛋白质应调pH至等电点。

12.A:在蛋白质的空间结构中,通常是疏水性氨基酸的侧链存在于分子的内部,因为疏水性基团避开水相而聚集在一起,而亲水侧链分布在分子的表面以充分地与水作用;蛋白质的一级结构是多肽链中氨基酸的排列顺序,此顺序即决定了肽链形成二级结构的类型以及更高层次的结构;维持蛋白质空间结构的作用力主要是次级键。 13.E:脯氨酸是亚氨基酸,参与形成肽键后不能再与C=O 氧形成氢键,因此不能形成α-

47

螺旋结构;氨基酸残基的支链大时,空间位阻大,妨碍螺旋结构的形成;连续出现多个酸性氨基酸或碱性氨基酸时,同性电荷会互相排斥,所以不能形成稳定的螺旋结构。 14.C:β-折叠结构是一种常见的蛋白质二级结构的类型,分为平行和反平行两种排列方式,所以题中C项的说法是错误的。在β-折叠结构中肽链处于曲折的伸展状态,氨基酸残基之间的轴心距离为0.35nm, 相邻肽链(或同一肽链中的几个肽段)之间形成氢键而使结构稳定。

15.C:蛋白质二级结构的两种主要类型是α-螺旋结构和β-折叠结构。在α-螺旋结构中肽链上的所有氨基酸残基均参与氢键的形成以维持螺旋结构的稳定。在β-折叠结构中,相邻肽链或肽段之间形成氢键以维持结构的稳定,所以氢键是维持蛋白质二级结构稳定的主要作用力。离子键、疏水键和范德华力在维持蛋白质的三级结构和四级结构中起重要作用,而二硫键在稳定蛋白质的三级结构中起一定作用。

16.E:肽键是连接氨基酸的共价键,它是维持蛋白质一级结构的作用力;而硫键是2分子半胱氨酸的巯基脱氢氧化形成的共价键,它可以存在于2条肽链之间也可以由存在于同一条肽链的2个不相邻的半胱氨酸之间,它在维持蛋白质三级结构中起一定作用,但不是最主要的。离子键和氢键都是维持蛋白质三级结构稳定的因素之一,但此项选择不全面,也不确切。次级键包括氢键、离子键、疏水键和范德华力,所以次项选择最全面、确切。

17.A:用凝胶过滤柱层析分离蛋白质是根据蛋白质分子大小不同进行分离的方法,与蛋白质分子的带电状况无关。在进行凝胶过滤柱层析过程中,比凝胶网眼大的分子不能进入网眼内,被排阻在凝胶颗粒之外。比凝胶网眼小的颗粒可以进入网眼内,分子越小进入网眼的机会越多,因此不同大小的分子通过凝胶层析柱时所经的路程距离不同,大分子物质经过的距离短而先被洗出,小分子物质经过的距离长,后被洗脱,从而使蛋白质得到分离。

18.A:蛋白质的变性是其空间结构被破坏,从而引起理化性质的改变以及生物活性的丧失,但其一级结构不发生改变,所以肽键没有断裂。蛋白质变性的机理是维持其空间结构稳定的作用力被破坏,氢键、离子键和疏水键都是维持蛋白质空间结构的作用力,当这些作用力被破坏时空间结构就被破坏并引起变性,所以与变性有关。

19.A:蛋白质的一级结构即蛋白质多肽链中氨基酸的排列顺序决定蛋白质的空间构象,因为一级结构中包含着形成空间结构所需要的所有信息,氨基酸残基的结构和化学性质决定了所组成的蛋白质的二级结构的类型以及三级、四级结构的构象;二硫键和次级键都是维持蛋白质空间构象稳定的作用力,但不决定蛋白质的构象;温度及pH影响蛋白质的溶解度、解离状态、生物活性等性质,但不决定蛋白质的构象。

20.B:氨基酸即有羧基又有氨基,可以提供氢质子也可以接受氢质子,所以即是酸又是碱,是两性电解质。由氨基酸组成的蛋白质分子上也有可解离基团,如谷氨酸和天冬氨酸侧链基团的羧基以及赖氨酸的侧链氨基,所以也是两性电解质,这是氨基酸和蛋白质所共有的性质;胶体性质是蛋白质所具有的性质,沉淀反应是蛋白质的胶体性质被破坏产生的现象;变性是蛋白质的空间结构被破坏后性质发生改变并丧失生物活性的现象,这三种现象均与氨基酸无关。 21.E: 氨基酸分子上的正电荷数和负电荷数相等时的pH值是其等电点,即净电荷为零,此时在电场中不泳动。由于净电荷为零,分子间的净电斥力最小,所以溶解度最小。 22.B:蛋白质的一级结构是指蛋白质多肽链中氨基酸的排列顺序,蛋白质中所含氨基酸的种类和数目相同但排列顺序不同时,其一级结构以及在此基础上形成的空间结构均有很大不同。蛋白质分子中多肽链的折叠和盘绕是蛋白质二级结构的内容,所以B项是正确的。

48

(四)是非判断题 1.错:脯氨酸与茚三酮反应产生黄色化合物,其它氨基酸与茚三酮反应产生蓝色化合物。 2.对:在肽平面中,羧基碳和亚氨基氮之间的键长为0.132nm,介于C—N 单键和C=N 双键之间,具有部分双键的性质,不能自由旋转。

3.错:蛋白质具有重要的生物功能,有些蛋白质是酶,可催化特定的生化反应,有些蛋白质则具有其它的生物功能而不具有催化活性,所以不是所有的蛋白质都具有酶的活性。 4.错:α-碳和羧基碳之间的键是C—C单键,可以自由旋转。

5.对:在20种氨基酸中,除甘氨酸外都具有不对称碳原子,所以具有L-型和D-型2种不同构型,这两种不同构型的转变涉及到共价键的断裂和从新形成。

6.错:由于甘氨酸的α-碳上连接有2个氢原子,所以不是不对称碳原子,没有2种不同的立体异构体,所以不具有旋光性。其它常见的氨基酸都具有不对称碳原子,因此具有旋光性。

7.错:必需氨基酸是指人(或哺乳动物)自身不能合成机体又必需的氨基酸,包括8种氨基酸。其它氨基酸人体自身可以合成,称为非必需氨基酸。

8.对:蛋白质的一级结构是蛋白质多肽链中氨基酸的排列顺序,不同氨基酸的结构和化学性质不同,因而决定了多肽链形成二级结构的类型以及不同类型之间的比例以及在此基础上形成的更高层次的空间结构。如在脯氨酸存在的地方α-螺旋中断,R侧链具有大的支链的氨基酸聚集的地方妨碍螺旋结构的形成,所以一级结构在很大程度上决定了蛋白质的空间构象。

9.错:一氨基一羧基氨基酸为中性氨基酸,其等电点为中性或接近中性,但氨基和羧基的解离度,即pK值不同。

10.错:蛋白质的变性是蛋白质空间结构的破坏,这是由于维持蛋白质构象稳定的作用力次级键被破坏所造成的,但变性不引起多肽链的降解,即肽链不断裂。

11.对:有些蛋白质是由一条多肽链构成的,只具有三级结构,不具有四级结构,如肌红蛋白。

12.对:血红蛋白是由4个亚基组成的具有4级结构的蛋白质,当血红蛋白的一个亚基与氧结合后可加速其它亚基与氧的结合,所以具有变构效应。肌红蛋白是仅有一条多肽链的蛋白质,具有三级结构,不具有四级结构,所以在与氧的结合过程中不表现出变构效应。

13.错:Edman降解法是多肽链N端氨基酸残基被苯异硫氢酸酯修饰,然后从多肽链上切下修饰的残基,经层析鉴定可知N端氨基酸的种类,而余下的多肽链仍为一条完整的多肽链,被回收后可继续进行下一轮Edman反应,测定N末端第二个氨基酸。反应重复多次就可连续测出多肽链的氨基酸顺序。FDNB法(Sanger反应)是多肽链N末端氨基酸与FDNB(2,4-二硝基氟苯)反应生成二硝基苯衍生物(DNP-蛋白),然后将其进行酸水解,打断所有肽键,N末端氨基酸与二硝基苯基结合牢固,不易被酸水解。水解产物为黄色的N端DNP-氨基酸和各种游离氨基酸。将DNP-氨基酸抽提出来并进行鉴定可知N端氨基酸的种类,但不能测出其后氨基酸的序列。

14.对:大多数氨基酸的α-碳原子上都有一个自由氨基和一个自由羧基,但脯氨酸和羟脯氨酸的α-碳原子上连接的氨基氮与侧链的末端碳共价结合形成环式结构,所以不是自由氨基。

15.对:蛋白质是由氨基酸组成的大分子,有些氨基酸的R侧链具有可解离基团,如羧基、氨基、咪唑基等等。这些基团有的可释放H+ ,有的可接受H+ ,所以使得蛋白质分子即是酸又是碱,是两性电解质。蛋白质分子中可解离R基团的种类和数量决定了蛋白质提供和接受H+ 的能力,即决定了它的酸碱性质。

49

16.对:在具有四级结构的蛋白质分子中,每个具有三级结构的多肽链是一个亚基。 17.错:具有两个或两个以上肽键的物质才具有类似于双缩脲的结构,具有双缩脲反应,而二肽只具有一个肽键,所以不具有双缩脲反应。

18.错:二硫键是由两个半胱氨酸的巯基脱氢氧化而形成的,所以两个半胱氨酸只能形成一个二硫键。

19.对:盐析引起的蛋白质沉淀是由于大量的中性盐破坏了蛋白质胶体的稳定因素(蛋白质分子表面的水化膜及所带同性电荷互相排斥),从而使蛋白质溶解度降低并沉淀,但并未破坏蛋白质的空间结构,所以不引起变性。根据不同蛋白质盐析所需的盐饱和度分段盐析可将蛋白质进行分离和纯化。

20.错:蛋白质的空间结构包括二级结构、三级结构和四级结构三个层次,三级结构只是其中一个层次。

21.错:维持蛋白质三级结构的作用力有氢键、离子键、疏水键、范德华力以及二硫键,其中最重要的是疏水键。

22.错:具有四级结构的蛋白质,只有所有的亚基以特定的适当方式组装在一起时才具有生物活性,缺少一个亚基或单独一个亚基存在时都不具有生物活性。

23.错:蛋白质变性是由于维持蛋白质构象稳定的作用力(次级键和而硫键)被破坏从而使蛋白质空间结构被破坏并山个丧失生物活性的现象。次级键被破坏以后,蛋白质结构松散,原来聚集在分子内部的疏水性氨基酸侧链伸向外部,减弱了蛋白质分子与水分子的相互作用,因而使溶解度将低。

24.错:蛋白质二级结构的稳定性是由链内氢键维持的,如α-螺旋结构和β-折叠结构中的氢键均起到稳定结构的作用。但并非肽链中所有的肽键都参与氢键的形成,如脯氨酸与相邻氨基酸形成的肽键,以及自由回转中的有些肽键不能形成链内氢键。 (五) 问答题(解题要点)

1.答:蛋白质一级结构指蛋白质多肽链中氨基酸残基的排列顺序。因为蛋白质分子肽链的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。

2.答:蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。蛋白质的空间结构决定蛋白质的功能。空间结构与蛋白质各自的功能是相适应的。 3.答:(1)多肽链主链绕中心轴旋转,形成棒状螺旋结构,每个螺旋含有3.6个氨基酸残基,螺距为0.54nm,氨基酸之间的轴心距为0.15nm.。

(2)α-螺旋结构的稳定主要靠链内氢键,每个氨基酸的N—H与前面第四个氨基酸的C=O 形成氢键。

(3)天然蛋白质的α-螺旋结构大都为右手螺旋。

4.答:β-折叠结构又称为β-片层结构,它是肽链主链或某一肽段的一种相当伸展的结构,多肽链呈扇面状折叠。

(1)两条或多条几乎完全伸展的多肽链(或肽段)侧向聚集在一起,通过相邻肽链主链上的氨基和羰基之间形成的氢键连接成片层结构并维持结构的稳定。 (2)氨基酸之间的轴心距为0.35nm(反平行式)和0.325nm(平行式)。 (3)β-折叠结构有平行排列和反平行排列两种。

5.答:蛋白质的生物学功能从根本上来说取决于它的一级结构。蛋白质的生物学功能是蛋白质分子的天然构象所具有的属性或所表现的性质。一级结构相同的蛋白质,其功能也相同,二者之间有统一性和相适应性。

6.答:蛋白质变性作用是指在某些因素的影响下,蛋白质分子的空间构象被破坏,并导

50

致其性质和生物活性改变的现象。蛋白质变性后会发生以下几方面的变化: (1)生物活性丧失;

(2)理化性质的改变,包括:溶解度降低,因为疏水侧链基团暴露;结晶能力丧失;分子形状改变,由球状分子变成松散结构,分子不对称性加大;粘度增加;光学性质发生改变,如旋光性、紫外吸收光谱等均有所改变。

(3)生物化学性质的改变,分子结构伸展松散,易被蛋白酶分解。

7.答:维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 8.答:蛋白质的重要作用主要有以下几方面:

(1)生物催化作用 酶是蛋白质,具有催化能力,新陈代谢的所有化学反应几乎都是在酶的催化下进行的。

(2)结构蛋白 有些蛋白质的功能是参与细胞和组织的建成。 (3)运输功能 如血红蛋白具有运输氧的功能。

(4)收缩运动 收缩蛋白(如肌动蛋白和肌球蛋白)与肌肉收缩和细胞运动密切相关。 (5)激素功能 动物体内的激素许多是蛋白质或多肽,是调节新陈代谢的生理活性物质。 (6)免疫保护功能 抗体是蛋白质,能与特异抗原结合以清除抗原的作用,具有免疫功能。

(7)贮藏蛋白 有些蛋白质具有贮藏功能,如植物种子的谷蛋白可供种子萌发时利用。 (8)接受和传递信息 生物体中的受体蛋白能专一地接受和传递外界的信息。 (9)控制生长与分化 有些蛋白参与细胞生长与分化的调控。

(10)毒蛋白 能引起机体中毒症状和死亡的异体蛋白,如细菌毒素、蛇毒、蝎毒、蓖麻毒素等。 9.答:(a)异硫氢酸苯酯;(b)丹黄酰氯;(c)脲、β-巯基乙醇;(d)胰凝乳蛋白酶;(e)CNBr; (f)胰蛋白酶。 10.答:(1)可能在7位和19位打弯,因为脯氨酸常出现在打弯处。 (2)13位和24位的半胱氨酸可形成二硫键。

(3)分布在外表面的为极性和带电荷的残基:Asp、Gln和Lys;分布在内部的是非极性的氨基酸残基:Try、Leu和Val;Thr尽管有极性,但疏水性也很强,因此,它出现在外表面和内部的可能性都有。

四川大学生物化学核酸部分考试题

(一)名词解释

1.单核苷酸(mononucleotide)

2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio)

4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron)

7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing)

9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage)

51

12.发夹结构(hairpin structure)

13.DNA的熔解温度(melting temperature Tm) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) (二)填空题

1.DNA双螺旋结构模型是---_________于____年提出的。 2.核酸的基本结构单位是_____。

3.脱氧核糖核酸在糖环______位置不带羟基。

4.两类核酸在细胞中的分布不同,DNA主要位于____中,RNA主要位于____中。

5.核酸分子中的糖苷键均为_____型糖苷键。糖环与碱基之间的连键为_____键。核苷与核苷之间通过_____键连接成多聚体。 6.核酸的特征元素____。

7.碱基与戊糖间是C-C连接的是______核苷。

8.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质是相似的。 9.DNA中的____嘧啶碱与RNA中的_____嘧啶碱的氢键结合性质是相似的。 10.DNA双螺旋的两股链的顺序是______关系。

11.给动物食用3H标记的_______,可使DNA带有放射性,而RNA不带放射性。 12.B型DNA双螺旋的螺距为___,每匝螺旋有___对碱基,每对碱基的转角是___。 13.在DNA分子中,一般来说G-C含量高时,比重___,Tm(熔解温度)则___,分子比较稳定。

14.在_ __条件下,互补的单股核苷酸序列将缔结成双链分子。

15.____RNA分子指导蛋白质合成,_____RNA分子用作蛋白质合成中活化氨基酸的载体。 16.DNA分子的沉降系数决定于_____、_____。

17.DNA变性后,紫外吸收__ _,粘度_ __、浮力密度_ __,生物活性将__ _。 18.因为核酸分子具有_ __、__ _,所以在___nm处有吸收峰,可用紫外分光光度计测定。 19.双链DNA热变性后,或在pH2以下,或在pH12以上时,其OD260______,同样条件下,单链DNA的OD260______。

20.DNA样品的均一性愈高,其熔解过程的温度范围愈______。

21.DNA所在介质的离子强度越低,其熔解过程的温度范围愈___,熔解温度愈___,所以DNA应保存在较_____浓度的盐溶液中,通常为_____mol/L的NaCI溶液。

22.mRNA在细胞内的种类___,但只占RNA总量的____,它是以_____为模板合成的,又是_______合成的模板。

23.变性DNA 的复性与许多因素有关,包括____,____,____,____,_____,等。 24.维持DNA双螺旋结构稳定的主要因素是_____,其次,大量存在于DNA分子中的弱作用力如_____,______和_____也起一定作用。

25.mRNA的二级结构呈___形,三级结构呈___形,其3'末端有一共同碱基序列___其功能是___。

26.常见的环化核苷酸有___和___。其作用是___,他们核糖上的___位与___位磷酸-OH环化。

27.真核细胞的mRNA帽子由___组成,其尾部由___组成,他们的功能分别是______,_______。

28.DNA在水溶解中热变性之后,如果将溶液迅速冷却,则DNA保持____状态;若使溶液缓慢冷却,则DNA重新形成___。 (三)选择题

52

1.ATP分子中各组分的连接方式是:

A.R-A-P-P-P B.A-R-P-P-P C.P-A-R-P-P D.P-R-A-P-P 2.hnRNA是下列哪种RNA的前体?

A.tRNA B.rRNA C.mRNA D.SnRNA 3.决定tRNA携带氨基酸特异性的关键部位是:

A.–XCCA3`末端 B.TψC环; C.DHU环 D.额外环 E.反密码子环 4.根据Watson-Crick模型,求得每一微米DNA双螺旋含核苷酸对的平均数为::

A.25400 B.2540 C.29411 D.2941 E.3505 5.构成多核苷酸链骨架的关键是:

A.2†3†-磷酸二酯键 B. 2†4†-磷酸二酯键 C.2†5†-磷酸二酯键 D. 3†4†-磷酸二酯键 E.3†5†-磷酸二酯键 6.与片段TAGAp互补的片段为:

A.AGATp B.ATCTp C.TCTAp D.UAUAp 7.含有稀有碱基比例较多的核酸是:

A.胞核DNA B.线粒体DNA C.tRNA D. mRNA 8.真核细胞mRNA帽子结构最多见的是:

A.m7APPPNmPNmP B. m7GPPPNmPNmP C.m7UPPPNmPNmP D.m7CPPPNmPNmP E. m7TPPPNmPNmP 9. DNA变性后理化性质有下述改变:

A.对260nm紫外吸收减少 B.溶液粘度下降 C.磷酸二酯键断裂 D.核苷酸断裂

10.双链DNA的Tm较高是由于下列哪组核苷酸含量较高所致:

A.A+G B.C+T C.A+T D.G+C E.A+C 11.密码子GψA,所识别的密码子是:

A.CAU B.UGC C.CGU D.UAC E.都不对

12.真核生物mRNA的帽子结构中,m7G与多核苷酸链通过三个磷酸基连接,连接方式是: A.2†-5† B.3†-5† C.3†-3† D.5†-5† E.3†-3† 13.在pH3.5的缓冲液中带正电荷最多的是:

A.AMP B.GMP C.CMP D.UMP 14.下列对于环核苷酸的叙述,哪一项是错误的?

A.cAMP与cGMP的生物学作用相反 B. 重要的环核苷酸有cAMP与cGMP C.cAMP是一种第二信使 D.cAMP分子内有环化的磷酸二酯键 15.真核生物DNA缠绕在组蛋白上构成核小体,核小体含有的蛋白质是

A.H1、H2、 H3、H4各两分子 B.H1A、H1B、H2B、H2A各两分子 C.H2A、H2B、H3A、H3B各两分子 D.H2A、H2B、H3、H4各两分子 E.H2A、H2B、H4A、H4B各两分子 (四)是非判断题

( )1.DNA是生物遗传物质,RNA则不是。

( )2.脱氧核糖核苷中的糖环3’位没有羟基。

( )3.原核生物和真核生物的染色体均为DNA与组蛋白的复合体。 ( )4.核酸的紫外吸收与溶液的pH值无关。

( )5.生物体的不同组织中的DNA,其碱基组成也不同。

( )6.核酸中的修饰成分(也叫稀有成分)大部分是在tRNA中发现的。 ( )7.DNA的Tm值和AT含量有关,AT含量高则Tm高。

53

( )8.真核生物mRNA的5`端有一个多聚A的结构。

( )9.DNA的Tm值随(A+T)/(G+C)比值的增加而减少。

( )10.B-DNA代表细胞内DNA的基本构象,在某些情况下,还会呈现A型、Z型和三股螺旋的局部构象。

( )11.DNA复性(退火)一般在低于其Tm值约20℃的温度下进行的。 ( )12.用碱水解核酸时,可以得到2’和3’-核苷酸的混合物。 ( )13.生物体内,天然存在的DNA分子多为负超螺旋。 ( )14.mRNA是细胞内种类最多、含量最丰富的RNA。

( )15.tRNA的二级结构中的额外环是tRNA分类的重要指标。

( )16.对于提纯的DNA样品,测得OD260/OD280<1.8,则说明样品中含有RNA。 ( )17.基因表达的最终产物都是蛋白质。

( )18.两个核酸样品A和B,如果A的OD260/OD280大于B的OD260/OD280,那么A的纯度大于B的纯度。

( )19.毫无例外,从结构基因中DNA序列可以推出相应的蛋白质序列。 ( )20.真核生物成熟mRNA的两端均带有游离的3’-OH。 (五)简答题

1.将核酸完全水解后可得到哪些组分?DNA和RNA的水解产物有何不同? 2.计算下列各题:

(1)T7噬菌体DNA,其双螺旋链的相对分子质量为2.5×10-7。计算DNA链的长度(设核苷酸的平均相对分子质量为650)。

(2)相对分子质量为130×106的病毒DNA分子,每微米的质量是多少? (3)编码88个核苷酸的tRNA的基因有多长?

(4)编码细胞色素C(104个氨基酸)的基因有多长(不考虑起始和终止序列)? (5)编码相对分子质量为9.6万的蛋白质的mRNA,相对分子质量为多少(设每个氨基酸的平均相对分子量为120)?

3.对一双链DNA而言,若一条链中(A+G)/(T+C)= 0.7,则: (1)互补链中(A+G)/(T+C)= ?

(2)在整个DNA分子中(A+G)/(T+C)= ?

(3)若一条链中(A+ T)/(G +C)= 0.7,则互补链中(A+ T)/(G +C)= ? (4)在整个DNA分子中(A+ T)/(G +C)= ? 4.DNA热变性有何特点?Tm值表示什么? 5.在pH7.0,0.165mol/L NaCl条件下,测得某一DNA样品的Tm为89.3℃。求出四种碱基百分组成。

6. 述下列因素如何影响DNA的复性过程: (1)阳离子的存在;(2)低于Tm的温度;(2)高浓度的DNA链。 7.核酸分子中是通过什么键连接起来的? 8.DNA分子二级结构有哪些特点?

9.在稳定的DNA双螺旋中,哪两种力在维系分子立体结构方面起主要作用? 10.简述tRNA二级结构的组成特点及其每一部分的功能。

11.用1mol/L的KOH溶液水解核酸,两类核酸(DNA及RNA)的水解有何不同? 12.如何将分子量相同的单链DNA与单链RNA分开?

13.计算下列各核酸水溶液在pH7.0,通过1.0cm光径杯时的260nm处的A值(消光度)。已知AMP的摩尔消光系数A260 = 15400 GMP的摩尔消光系数A260 = 11700 CMP的摩尔消光系数A260 = 7500 UMP的摩尔消光系数A260 = 9900

54

dTMP的摩尔消光系数A260 = 9200 求:(1)32μmol/L AMP,(2)47.5μmol/L CMP,(3)6.0μmol/L UMP的消光度,(4)48μmol/L AMP和32μmol/L UMP混合物的A260消光度。(5) A260 = 0.325的GMP溶液的摩尔浓度(以摩尔/升表示,溶液pH7.0)。(6) A260 = 0.090的dTMP溶液的摩尔浓度(以摩尔/升表示,溶液pH7.0)。

14.如果人体有1014个细胞,每个体细胞的DNA量为6.4×109个碱基对。试计算人体DNA的总长度是多少?是太阳-地球之间距离(2.2×109公里)的多少倍?

15.指出在pH2.5、pH3.5、pH6、pH8、pH11.4时,四种核苷酸所带的电荷数(或所带电荷数多少的比较),并回答下列问题:

(1)电泳分离四种核苷酸时,缓冲液应取哪个pH值比较合适?此时它们是向哪一极移动?移动的快慢顺序如何?

(2)当要把上述四种核苷酸吸附于阴离子交换树脂柱上时,应调到什么pH值?

(3)如果用洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离时,洗脱液应调到什么pH值?这四种核苷酸上的洗脱顺序如何?为什么? 参考答案: (一)名词解释

1. 单核苷酸(mononucleotide):核苷与磷酸缩合生成的磷酸酯称为单核苷酸。 2. 磷酸二酯键(phosphodiester bonds):单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。

3. 不对称比率(dissymmetry ratio):不同生物的碱基组成由很大的差异,这可用不对称比率(A+T)/(G+C)表示。

4. 碱基互补规律(complementary base pairing):在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G„C(或C„G)和A„T(或T„A)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律)。 5. 反密码子(anticodon):在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。反密码子与密码子的方向相反。 6. 顺反子(cistron):基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。

7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。这个DNA螺旋的重组过程称为“复性”。 8. 退火(annealing):当将双股链呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。 9. 增色效应(hyper chromic effect):当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫“增色效应”。 10. 减色效应(hypo chromic effect):DNA在260nm处的光密度比在DNA分子中的各个碱基在260nm处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”。 11. 噬菌体(phage):一种病毒,它可破坏细菌,并在其中繁殖。也叫细菌的病毒。 12. 发夹结构(hairpin structure):RNA是单链线形分子,只有局部区域为双链结构。这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。 13. DNA的熔解温度(Tm值):引起DNA发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度(Tm)。

55

14. 分子杂交(molecular hybridization):不同的DNA片段之间,DNA片段与RNA片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构。这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交。

15. 环化核苷酸(cyclic nucleotide):单核苷酸中的磷酸基分别与戊糖的3’-OH及5’-OH形成酯键,这种磷酸内酯的结构称为环化核苷酸。 (二)填空题

1. Watson-Crick; 1953 2. 核苷酸 3. 2’

4. 细胞核;细胞质

5. β;糖苷;磷酸二酯键 6. 磷

7. 假尿嘧啶 8. 胸腺;尿 9. 胸腺;尿

10. 反向平行、互补 11. 胸腺嘧啶

12. 3.4nm;10;36° 13. 大;高 14. 退火

15. mRNA;tRNA

16. 分子大小;分子形状 17. 增加;下降;升高;丧失 18. 嘌呤;嘧啶;260 19. 增加;不变 20. 窄

21. 宽;低;高;1

22. 多;5%;DNA;蛋白质

23. 样品的均一度;DNA的浓度;DNA片段大小;温度的影响;溶液离子强度 24. 碱基堆积力;氢键;离子键;范德华力

25. 三叶草;倒L型;CCA;携带活化了的氨基酸 26. cAMP;cGMP;第二信使;3’;5’

27. m7G;polyA;m7G识别起始信号的一部分;polyA对mRNA的稳定性具有一定影响 28. 单链;双链 (三)选择题

1.B:ATP分子中各组分的连接方式为:腺嘌呤-核糖-三磷酸,既A-R-P-P-P。 2.C:hnRNA是核不均一RNA,在真核生物细胞核中,为真核mRNA的前体。

3.E:tRNA的功能是以它的反密码子区与mRNA的密码子碱基互补配对,来决定携带氨基酸的特异性。

4.D:根据Watson-Crick模型,每对碱基间的距离为0.34nm,那么1μmDNA双螺旋平均含有1000nm/0.34nm个核苷酸对数,即2941对。

5.E:核苷酸是通过3`5`-磷酸二酯键连结成多核苷酸链的。

6.C:核酸是具有极性的分子,习惯上以5’→3’的方向表示核酸片段,TAGAp互补的片段也要按5’→3’的方向书写,即TCTAp。

56

7.C:tRNA含有稀有碱基比例较多的核酸。 8.B:真核细胞mRNA帽子结构最多见的是通过5’,5’-磷酸二酯键连接的甲基鸟嘌呤核苷酸,即m7GPPPNmP。

9.B:核酸的变性指核酸双螺旋区的氢键断裂,变成单链的无规则的线团,并不涉及共价键的断裂。一系列物化性质也随之发生改变:粘度降低,浮力密度升高等,同时改变二级结构,有时可以失去部分或全部生物活性。DNA变性后,由于双螺旋解体,碱基堆积已不存在,藏于螺旋内部的碱基暴露出来,这样就使得变性后的DNA对260nm紫外光的吸光率比变性前明显升高(增加),这种现象称为增色效应。因此判断只有B对。

10.D:因为G≡C对比A=T对更为稳定,故G≡C含量越高的DNA的变性是Tm值越高,它们成正比关系。

11.D:ψ为假尿苷酸,其中的U可以与A配对,所以反密码子GψA,所识别的密码子是UAC。

12.D:参照选择题8。

13.C:在pH3.5的缓冲液中,C是四种碱基中获得正电荷最多的碱基。

14.A:在生物细胞中存在的环化核苷酸,研究得最多的是3’,5’-环腺苷酸(cAMP)和3’,5’-环鸟苷酸(cGMP)。它们是由其分子内的磷酸与核糖的3’,5’碳原子形成双酯环化而成的。都是一种具有代谢调节作用的环化核苷酸。常被称为生物调节的第二信使。 15.D:真核染色质主要的组蛋白有五种——Hl、H2A、H2B、H3、H4。DNA和组蛋白形成的复合物就叫核小体,核小体是染色质的最基本结构单位,成球体状,每个核小体含有8个组蛋白,各含两个H2A、H2B、H3、H4分子,球状体之间有一定间隔,被DNA链连成串珠状。

(四)是非判断题

1.错:RNA也是生命的遗传物质。

2.错:脱氧核糖核苷中的糖环2’位没有羟基。

3.错:真核生物的染色体为DNA与组蛋白的复合体,原核生物的染色体为DNA与碱性精胺、亚精胺结合。

4.错:核酸的紫外吸收与溶液的pH值有关。

5.错:生物体的不同组织中的DNA,其碱基组成也不同。

6.对:核酸中的修饰成分(也叫稀有成分)大部分是在tRNA中发现的。 7.错:DNA的Tm值和GC含量有关,GC含量高则Tm高。 8.错:真核生物mRNA的3`端有一个多聚A的结构。 9.对:(G+C)含量减少,DNA的Tm值减少,(A+T)/(G+C)比值的增加。

10.对:在细胞内,B-DNA代表DNA的基本构象,但在不同某些情况下,也会呈现A型、Z型和三股螺旋的局部构象。

11.对:DNA复性(退火)一般在低于其Tm值约20~25℃的温度下进行的。

12.对:用碱水解核酸时,先生成2’,3’-环核苷酸,再水解为2’或3’-核苷酸。 13.对:生物体内,负超螺旋DNA容易解链,便于进行复制、转录等反应。

14.错:mRNA是细胞内种类最多、但含量很低的RNA。细胞中含量最丰富的RNA是rRNA。 15.对:不同tRNA中额外环大小差异很大,因此可以作为tRNA分类的重要指标。 16.错:对于提纯的DNA样品,如果测得OD260/OD280<1.8,则说明样品中有蛋白质。 17.错:基因表达的最终产物可以是蛋白质或RNA。

18.错:核酸样品的纯度可以根据样品的OD260/OD280的比值判断,纯的DNA样品OD260/OD280=1.8,纯的RNA样品OD260/OD280=2.0。

19.错:真核生物的结构基因中包括内含子和外显子部分,经转录、加工后只有外显子

57

部分翻译成蛋白质,与蛋白质氨基酸序列相对应。

20.对:真核生物成熟mRNA的5’为帽子结构,即m7G(5’)PPP(5’)Nm-,因此两5’端也是3’-OH。

(五)问答题及计算题(解题要点)

1.答:核酸完全水解后可得到碱基、戊糖、磷酸三种组分。DNA和RNA的水解产物戊糖、嘧啶碱基不同。 2.答:(1)(2.5×10-7/650) × 0.34 = 1.3× 104nm = 13μm。 (2)650/ 0.34 =1.9×106/μm。

(3)88 × 0.34 nm = 30nm =0.3μm。

(4)104 × 3 × 0.34 =106nm ≈ 0.11μm。 (5)(96000/120) × 3 × 320 = 76800。 3.答:(1)设DNA的两条链分别为α和β,那么: A =βT,Tα=Aβ,Gα=Cβ,:Cα=Gβ,

因为,(Aα+ Gα)/(Tβ+ Cβ)= (Aα+ Gα)/(Aβ+ Gβ)= 0.7 所以,互补链中(Aβ+ Gβ)/(Tβ+ Cβ)= 1/0.7 =1.43 (2)在整个DNA分子中,因为A = T, G = C, 所以,A+G = T+C,(A+G)/(T+C)= 1 (3)假设同(1),则

Aα+ Tα= Tβ+ Aβ,Gα+ Cα= Cβ+Gβ, 所以,(Aα+ Tα)/(Gα+Cα)=(Aβ+ Tβ)/(Gβ+Cβ)= 0.7 (4)在整个DNA分子中

(Aα+ Tα+ Aβ+ Tβ)/(Gα+Cα+ Gβ+Cβ)= 2(Aα+ Tα)/2(Gα+Cα)= 0.7 4.答:将DNA的稀盐溶液加热到70~100℃几分钟后,双螺旋结构即发生破坏,氢键断裂,两条链彼此分开,形成无规则线团状,此过程为DNA的热变性,有以下特点:变性温度范围很窄,260nm处的紫外吸收增加;粘度下降;生物活性丧失;比旋度下降;酸碱滴定曲线改变。Tm值代表核酸的变性温度(熔解温度、熔点)。在数值上等于DNA变性时摩尔磷消光值(紫外吸收)达到最大变化值半数时所对应的温度。 5.答:为(G + C)% = (Tm – 69.3) × 2.44 ×% = (89.3-69.3) × 2.44 ×% =48.8%

G = C = 24.4%

(A + T)% = 1- 48.8% =51.2% A = T = 25.6% 6.答:(1)阳离子的存在可中和DNA中带负电荷的磷酸基团,减弱DNA链间的静电作用,促进DNA的复性;

(2)低于Tm的温度可以促进DNA复性;

(3)DNA链浓度增高可以加快互补链随机碰撞的速度、机会,从而促进DNA复性。 7.答:核酸分子中是通过3’,5’-磷酸二酯键连接起来的。

8.答:按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

58

9.答:在稳定的DNA双螺旋中,碱基堆积力和碱基配对氢键在维系分子立体结构方面起主要作用。

10.答:tRNA的二级结构为三叶草结构。其结构特征为:

(1)tRNA的二级结构由四臂、四环组成。已配对的片断称为臂,未配对的片断称为环。 (2)叶柄是氨基酸臂。其上含有CCA-OH3’,此结构是接受氨基酸的位置。

(3)氨基酸臂对面是反密码子环。在它的中部含有三个相邻碱基组成的反密码子,可与mRNA上的密码子相互识别。

(4)左环是二氢尿嘧啶环(D环),它与氨基酰-tRNA合成酶的结合有关。 (5)右环是假尿嘧啶环(TψC环),它与核糖体的结合有关。

(6)在反密码子与假尿嘧啶环之间的是可变环,它的大小决定着tRNA分子大小。 11.答:不同。RNA可以被水解成单核苷酸,而DNA分子中的脱氧核糖2’碳原子上没有羟基,所以DNA不能被碱水解。 12.答:(1)用专一性的RNA酶与DNA酶分别对两者进行水解。 (2)用碱水解。RNA能够被水解,而DNA不被水解。

(3)进行颜色反应。二苯胺试剂可以使DNA变成蓝色;苔黑酚(地衣酚)试剂能使RNA变成绿色。

(4)用酸水解后,进行单核苷酸的分析(层析法或电泳法),含有U的是RNA,含有T的是DNA。 13.答:已知:(1) 32μmol/L AMP的 A260消光度 A260 =32×10-6 × 15400 = 0.493 (2)47.5μmol/L CMP的 A260消光度 A260 =47.5×10-6 × 7500 = 0.356 (3)6.0μmol/L UMP的A260消光度 A260 =6.0×10-6 × 9900 = 0.0594

(4)48μmol/L AMP和32μmol/L UMP混合物的A260消光度

A260 =32×10-6 × 9900 + 48×10-6 × 15400 = 0.493 = 1.056 (5)0.325/11700 = 2.78 × 10-5mol/L (6)0.090/9200 = 9.78 × 10-6mol/L 14.答:(1)每个体细胞的DNA的总长度为: 6.4×109×0.34nm = 2.176×109 nm= 2.176m (2)人体内所有体细胞的DNA的总长度为: 2.176m×1014 = 2.176×1011km

(3)这个长度与太阳-地球之间距离(2.2×109公里)相比为: 2.176×1011/2.2×109 = 99倍

15.答:种核苷酸带电荷情况:pH2.5 pH3.5 pH6 pH8 pH11.4 UMP 负电荷最多

-1 -1.5 -2 -3 GMP 负电荷较多 -0.95 -1.5 -2 -3 AMP 负电荷较少 -0.46 -1.5 -2 -2 CMP 带正电荷 -0.16 -1.5 -2 -2

(1)电泳分离四种核苷酸时应取pH3.5 的缓冲液,在该pH值时,这四种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次为:UMP>GMP>AMP>CMP (2)应取pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。虽然pH11.4时核苷酸带有更多的负电荷,但pH过稿对树脂不利。

(3)洗脱液应调到pH2.5。当不考虑树脂的非极性吸附时洗脱顺序为CMP>AMP>UMP>GMP

59

(根据pH2.5时核苷酸负电荷的多少来决定洗脱速度),但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的3倍。静电吸附与非极性吸附共同作用的结果使洗脱顺序为:CMP>AMP>UMP>GMP。

四川大学生物化学核酸部分考试题

(一)名词解释

1.米氏常数(Km值)

2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator)

8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme)

11.诱导酶(induced enzyme) 12.酶原(zymogen)

13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) (二)英文缩写符号

1.NAD+(nicotinamide adenine dinucleotide) 2.FAD(flavin adenine dinucleotide) 3.THFA(tetrahydrofolic acid)

4.NADP+(nicotinamide adenine dinucleotide phosphate) 5.FMN(flavin mononucleotide) 6.CoA(coenzyme A)

7.ACP(acyl carrier protein)

8.BCCP(biotin carboxyl carrier protein) 9.PLP(pyridoxal phosphate) (三)填空题

1.酶是 产生的,具有催化活性的 。

2.酶具有 、 、 和 等催化特点。 3.影响酶促反应速度的因素有 、 、 、 、 和 。

4.胰凝乳蛋白酶的活性中心主要含有 、 、 和 基,三者构成

一个氢键体系,使其中的 上的 成为强烈的亲核基团,此系统称为 系统或 。 5.与酶催化的高效率有关的因素有 、 、 、 、 等。

6.丙二酸和戊二酸都是琥珀酸脱氢酶的 抑制剂。 7.变构酶的特点是:(1) ,(2) ,它不符合一般的 ,当以V对[S]作图时,它表现出 型曲线,而非 曲线。它是 酶。

60

8.转氨酶的辅因子为 即维生素 。其有三种形式,分别为 、 、 ,其中 在氨基酸代谢中非常重要,是 、 和 的辅酶。

9.叶酸以其 起辅酶的作用,它有 和 两种还原形式,后者的功能作为 载体。

10.一条多肽链Asn-His-Lys-Asp-Phe-Glu-Ile-Arg-Glu-Tyr-Gly-Arg经胰蛋白酶水解可得到 个多肽。

11.全酶由 和 组成,在催化反应时,二者所起的作用不同,其中 决定酶的专一性和高效率, 起传递电子、原子或化学基团的作用。

12.辅助因子包括 、 和 等。其中 与酶蛋白结合紧密,需要 除去, 与酶蛋白结合疏松,可以用 除去。

13.T.R.Cech和S.Alman因各自发现了 而共同获得1989年的诺贝尔奖(化学奖)。 14.根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类 、 、 、 、 、 和 。

15.根据国际酶学委员会的规定,每一种酶都有一个唯一的编号。醇脱氢酶的编号是EC1.1.1.1,EC代表 ,4个数字分别代表 、 、 和 。

16.根据酶的专一性程度不同,酶的专一性可以分为 、 、 和 。

17.酶的活性中心包括 和 两个功能部位,其中 直接与底物结合,决定酶的专一性, 是发生化学变化的部位,决定催化反应的性质。 18.酶活力是指 ,一般用 表示。

19.通常讨论酶促反应的反应速度时,指的是反应的 速度,即 时测得的反应速度。 20.解释别构酶作用机理的假说有 模型和 模型两种。 21.固定化酶的优点包括 , , 等。

22.pH值影响酶活力的原因可能有以下几方面:影响 ,影响 ,影响 。 23.温度对酶活力影响有以下两方面:一方面 ,另一方面 。

24.脲酶只作用于尿素,而不作用于其他任何底物,因此它具有 专一性;甘油激酶可以催化甘油磷酸化,仅生成甘油-1-磷酸一种底物,因此它具有 专一性。 25.酶促动力学的双倒数作图(Lineweaver-Burk作图法),得到的直线在横轴的截距为 ,纵轴上的截距为 。

26.磺胺类药物可以抑制 酶,从而抑制细菌生长繁殖。 27.判断一个纯化酶的方法优劣的主要依据是酶的 和 。

28.维生素是维持生物体正常生长所必需的一类_________有机物质。主要作用是作为_________的组分参与体内代谢。

29.根据维生素的____________性质,可将维生素分为两类,即____________和____________。

30.维生素B1由__________环与___________环通过__________相连,主要功能是以__________形式,作为____________和____________的辅酶,转移二碳单位。

31.维生素B2的化学结构可以分为二部分,即____________和____________,其中____________原子上可以加氢,因此有氧化型和还原型之分。 32.维生素B3由__________与_________通过___________相连而成,可以与__________,_________和___________共同组成辅酶___________,作为各种____________反应的辅酶,传递____________。

33.维生素B5是_________衍生物,有_________,_________两种形式,其辅酶形式是________与_________,作为_______酶的辅酶,起递______作用。

34.生物素可看作由____________,____________,____________三部分组成,是____________的辅酶,在____________的固定中起重要的作用。

61

35.维生素B12是唯一含____________的维生素,由____________,____________和氨基丙酸三部分组成,有多种辅酶形式。其中____________是变位酶的辅酶,____________是转甲基酶的辅酶。

36.维生素C是____________的辅酶,另外还具有____________作用等。 (四)选择题

1.酶的活性中心是指:

A.酶分子上含有必需基团的肽段 B.酶分子与底物结合的部位

C.酶分子与辅酶结合的部位 D.酶分子发挥催化作用的关键性结构区 E.酶分子有丝氨酸残基、二硫键存在的区域 2.酶催化作用对能量的影响在于:

A.增加产物能量水平 B.降低活化能 C.降低反应物能量水平 D.降低反应的自由能 E.增加活化能 3.竞争性抑制剂作用特点是:

A.与酶的底物竞争激活剂 B.与酶的底物竞争酶的活性中心

C.与酶的底物竞争酶的辅基 D.与酶的底物竞争酶的必需基团; E.与酶的底物竞争酶的变构剂

4.竞争性可逆抑制剂抑制程度与下列那种因素无关: A.作用时间 B.抑制剂浓度 C.底物浓度

D.酶与抑制剂的亲和力的大小 E.酶与底物的亲和力的大小 5.哪一种情况可用增加[S]的方法减轻抑制程度:

A.不可逆抑制作用 B.竞争性可逆抑制作用 C.非竞争性可逆抑制作用 D.反竞争性可逆抑制作用 E.无法确定 6.酶的竞争性可逆抑制剂可以使:

A.Vmax减小,Km减小 B.Vmax增加,Km增加 C.Vmax不变,Km增加 D.Vmax不变,Km减小 E.Vmax减小,Km增加

7.下列常见抑制剂中,除哪个外都是不可逆抑制剂: A 有机磷化合物 B 有机汞化合物 C 有机砷化合物 D 氰化物 E 磺胺类药物

8.酶的活化和去活化循环中,酶的磷酸化和去磷酸化位点通常在酶的哪一种氨基酸残基上:

A.天冬氨酸 B.脯氨酸 C.赖氨酸 D.丝氨酸 E.甘氨酸

9.在生理条件下,下列哪种基团既可以作为H+的受体,也可以作为H+的供体: A.His的咪唑基 B.Lys的ε氨基 C.Arg的胍基 D.Cys的巯基 E.Trp的吲哚基

10.对于下列哪种抑制作用,抑制程度为50%时,[I]=Ki : A.不可逆抑制作用 B.竞争性可逆抑制作用

C.非竞争性可逆抑制作用 D.反竞争性可逆抑制作用 E.无法确定 11.下列辅酶中的哪个不是来自于维生素: A.CoA B.CoQ C.PLP D.FH2 E.FMN 12.下列叙述中哪一种是正确的: A.所有的辅酶都包含维生素组分

B.所有的维生素都可以作为辅酶或辅酶的组分

62

C.所有的B族维生素都可以作为辅酶或辅酶的组分 D.只有B族维生素可以作为辅酶或辅酶的组分 13.多食糖类需补充:

A.维生素B1 B.维生素B2 C.维生素B5 D.维生素B6 E.维生素B7 14.多食肉类,需补充:

A.维生素B1 B.维生素B2 C.维生素B5 D.维生素B6 E.维生素B7

15.以玉米为主食,容易导致下列哪种维生素的缺乏: A.维生素B1 B.维生素B2 C.维生素B5 D.维生素B6 E.维生素B7

16.下列化合物中除哪个外,常作为能量合剂使用: A.CoA B.ATP C.胰岛素 D.生物素 17.下列化合物中哪个不含环状结构:

A.叶酸 B.泛酸 C.烟酸 D.生物素 E.核黄素 18.下列化合物中哪个不含腺苷酸组分: A.CoA B.FMN C.FAD D.NAD+ E.NADP+ 19.需要维生素B6作为辅酶的氨基酸反应有:

A.成盐、成酯和转氨 B.成酰氯反应 C.烷基化反应 D.成酯、转氨和脱羧 E.转氨、脱羧和消旋 (五)是非判断题

( )1.酶促反应的初速度与底物浓度无关。

( )2.当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。

( )3.某些酶的Km由于代谢产物存在而发生改变,而这些代谢产物在结构上与底物无关。

( )4.某些调节酶的V-[S]的S形曲线表明,酶与少量底物的结合增加了酶对后续底物分子的亲和力。

( )5.测定酶活力时,底物浓度不必大于酶浓度。

( )6.测定酶活力时,一般测定产物生成量比测定底物消耗量更为准确。

( )7.在非竞争性抑制剂存在下,加入足量的底物,酶促的反应能够达到正常Vmax。 ( )8.碘乙酸因可与活性中心-SH以共价键结合而抑制巯基酶,而使糖酵解途径受阻。 ( )9.诱导酶是指当细胞加入特定诱导物后,诱导产生的酶,这种诱导物往往是该酶的产物。

( )10.酶可以促成化学反应向正反应方向转移。

( )11.对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度。 ( )12.酶只能改变化学反应的活化能而不能改变化学反应的平衡常数。 ( )13.酶活力的测定实际上就是酶的定量测定。

( )14.从鼠脑分离的己糖激酶可以作用于葡萄糖(Km=6×10-6mol/L)或果糖(Km=2×10-3mol/L),则己糖激酶对果糖的亲和力更高。

( )15.Km是酶的特征常数,只与酶的性质有关,与酶浓度无关 ( )16.Km是酶的特征常数,在任何条件下,Km是常数。

( )17.Km是酶的特征常数,只与酶的性质有关,与酶的底物无关。 ( )18.一种酶有几种底物就有几种Km值。

( )19.当[S]>>Km时, V趋向于Vmax,此时只有通过增加[E]来增加V。

63

( )20.酶的最适pH值是一个常数,每一种酶只有一个确定的最适pH值。

( )21.酶的最适温度与酶的作用时间有关,作用时间长,则最适温度高,作用时间短,则最适温度低。

( )22.金属离子作为酶的激活剂,有的可以相互取代,有的可以相互拮抗。 ( )23.增加不可逆抑制剂的浓度,可以实现酶活性的完全抑制。 ( )24.竞争性可逆抑制剂一定与酶的底物结合在酶的同一部位。

( )25.由1g粗酶制剂经纯化后得到10mg电泳纯的酶制剂,那么酶的比活较原来提高了100倍。

( )26.酶反应的最适pH值只取决于酶蛋白本身的结构。 ( )27.所有B族维生素都是杂环化合物。

( )28.B族维生素都可以作为辅酶的组分参与代谢。 ( )29.脂溶性维生素都不能作为辅酶参与代谢。

( )30.除了动物外,其他生物包括植物、微生物的生长也有需要维生素的现象。 ( )31.植物的某些器官可以自行合成某些维生素,并供给植物整体生长所需。 ( )32.维生素E不容易被氧化,因此可做抗氧化剂。 (六)问答题及计算题 1.怎样证明酶是蛋白质?

2.简述酶作为生物催化剂与一般化学催化剂的共性及其个性? 3.简述Cech及Altman是如何发现具有催化活性的RNA的? 4.试指出下列每种酶具有哪种类型的专一性?

(1)脲酶(只催化尿素NH2CONH2的水解,但不能作用于NH2CONHCH3);

(2)β-D-葡萄糖苷酶(只作用于β-D-葡萄糖形成的各种糖甘,但不能作用于其他的糖苷,例如果糖苷);

(3)酯酶(作用于R1COOR2的水解反应);

(4)L-氨基酸氧化酶(只作用于L-氨基酸,而不能作用于D-氨基酸); (5)反丁烯二酸水合酶[只作用于反丁烯二酸(延胡索酸),而不能作用于顺丁烯二酸(马来酸)];

(6)甘油激酶(催化甘油磷酸化,生成甘油-1-磷酸)。

5.称取25mg蛋白酶配成25mL溶液,取2mL溶液测得含蛋白氮0.2mg,另取0.1mL溶液测酶活力,结果每小时可以水解酪蛋白产生1500μg酪氨酸,假定1个酶活力单位定义为每分钟产生1μg酪氨酸的酶量,请计算: (1)酶溶液的蛋白浓度及比活。

(2)每克纯酶制剂的总蛋白含量及总活力。

6.Vmax与米氏常数可以通过作图法求得,试比较V~[S]图,双倒数图,V~V/[S]作图,[S]/V~[S]作图及直接线性作图法求Vmax和Km的优缺点? 7.(1)为什么某些肠道寄生虫如蛔虫在体内不会被消化道内的胃蛋白酶、胰蛋白酶消化? (2)为什么蚕豆必须煮熟后食用,否则容易引起不适?

8.使用下表数据,作图判断抑制剂类型(竞争性还是非竞争性可逆抑制剂)? [S] mmol/L 2.0 3.0 4.0 10.0 15.0

每小时形成产物的量 (μmol) 13.9 17.9 21.3 31.3 37.0 (没有抑制剂)

每小时形成产物的量(μmol) 8.8 12.1 14.9 25.7 31.3 (有抑制剂)

9.甘油醛-3-磷酸脱氢酶(Mr 150 000)的活性位点有一个Cys残基,假定为使5mL的

64

1.2mg/mL的酶溶液完全失活,需要3.0×10 -2mg碘乙酰胺(Mr 185),计算酶的催化亚基的数目?

10.对活细胞的实验测定表明,酶的底物浓度通常就在这种底物的Km值附近,请解释其生理意义?为什么底物浓度不是大大高于Km或大大低于Km呢? 11.有时别构酶的活性可以被低浓度的竞争性抑制剂激活,请解释? 12.(1)对于一个遵循米氏动力学的酶而言,当[S]=Km时,若V=35μmol/min,Vmax是多少μmol/min?

(2)当[S]=2×10 -5mo/L,V=40μmol/min,这个酶的Km是多少?

(3)若I表示竞争性抑制剂,KI=4×10-5mol/L,当[S]=3×10-2mol/L和[I]=3×10-5mol/L时,V是多少?

(4)若I是非竞争性抑制剂,在KI、[S]和[I]条件与(3)中相同时,V是多少? (2)计算[S]=1.0×10-6mol/L和[S]=1.0×10-1mol/L时的v?

(3)计算[S]=2.0×10-3mol/L或[S]=2.0×10-6mol/L时最初5min内的产物总量? (4)假如每一个反应体系中酶浓度增加到4倍时,Km,Vmax是多少? 13.在很多酶的活性中心均有His残基参与,请解释? 22.将下列化学名称与B族维生素及其辅酶形式相匹配? (A)泛酸;(B)烟酸;(C)叶酸;(D)硫胺素;(E)核黄素;(F)吡哆素;(G)生物素。 (1)B1 ;(2)B2 ;(3)B3 ;(4)B5 ;(5)B6 ; (6)B7 ;(7)B11; (8)B12。 (Ⅰ)FMN;(Ⅱ)FAD;(Ⅲ)NAD+;(Ⅳ)NADP+;(Ⅴ)CoA;(Ⅵ)PLP;(Ⅶ)PMP;(Ⅷ)FH2,FH4;(Ⅸ)TPP。 参考答案:

(一)名词解释

1.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。

2.底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性。通常酶只能催化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,酶的专一性可分为三种类型:绝对专一性、相对专一性、立体专一性。

3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。

4.单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。分子量为13,000——35,000。

5.寡聚酶:有几个或多个亚基组成的酶称为寡聚酶。寡聚酶中的亚基可以是相同的,也可以是不同的。亚基间以非共价键结合,容易为酸碱,高浓度的盐或其它的变性剂分离。寡聚酶的分子量从35 000到几百万。

6.多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。多酶复合体有利于细胞中一系列反应的连续进行,以提高酶的催化效率,同时便于机体对酶的调控。多酶复合体的分子量都在几百万以上。

7.激活剂:凡是能提高酶活性的物质,都称激活剂,其中大部分是离子或简单的有机化合物。

8.抑制剂:能使酶的必需基团或酶活性部位中的基团的化学性质改变而降低酶的催化活性甚至使酶的催化活性完全丧失的物质。

9.变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节。

65

10.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

11.诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往是该酶底物的类似物或底物本身。

12.酶原:酶的无活性前体,通常在有限度的蛋白质水解作用后,转变为具有活性的酶。 13.酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表示: 比活力= 活力单位数

蛋白质量(mg)

14.活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。

(二)英文缩写符号

1.NAD+ (nicotinamide adenine dinucleotide):烟酰胺腺嘌呤二核苷酸;辅酶Ⅰ。 2.FAD(flavin adenine dinucleotide):黄素腺嘌呤二核苷酸。 3.THFA(tetrahydrofolic acid):四氢叶酸。

4.NADP+(nicotinamide adenine dinucleotide phosphate):烟酰胺腺嘌呤二核苷酸磷酸;辅酶Ⅱ。

5.FMN(flavin mononucleotide):黄素单核苷酸。 6.CoA(coenzyme A):辅酶A。 7.ACP(acyl carrier protein):酰基载体蛋白。 8.BCCP(biotin carboxyl carrier protein):生物素羧基载体蛋白。 9.PLP(pyridoxal phosphate):磷酸吡哆醛。 (三)填空题

1.活细胞;蛋白质

2.高效性;专一性;作用条件温和;受调控 3.[E];[S];pH;T(温度);I(抑制剂);A(激活剂)

4.Ser195;His57;Asp102;Ser195;氧原子;电荷转接;电荷中继网 5.邻近效应;定向效应;诱导应变;共价催化;活性中心酸碱催化 6.竞争性

7.由多个亚基组成;除活性中心外还有变构中心;米氏方程;S;双;寡聚酶

8.磷酸吡哆醛;VB6;磷酸吡哆醛;磷酸吡哆胺;磷酸吡哆醇;磷酸吡哆醛;转氨酶;脱羧酶;消旋酶

9.还原性产物;DHFA;THFA;一碳单位 10.三

11.酶蛋白;辅助因子;酶蛋白;辅助因子

12.辅酶;辅基;金属离子;辅基;化学方法处理;辅酶;透析法 13.核酶(具有催化能力的RNA)

14.氧化还原酶类;转移酶类;水解酶类;裂合酶类;异构酶类;合成酶类

15.酶学委员会;氧化还原酶类;作用-CHOH基团的亚类;受体NAD+或NADP+的亚亚类;序号为1

16.绝对专一性;相对专一性;立体专一性 17.结合部位;催化部位;结合部位;催化部位

18.酶催化化学反应的能力;一定条件下,酶催化某一化学反应的反应速度 19.初;底物消耗量<5%

66

20.齐变;序变

21.稳定性好;可反复使用;易于与反应液分离

22.底物分子的解离状态;酶分子的解离状态;中间复合物的解离状态 23.温度升高,可使反应速度加快;温度太高,会使酶蛋白变性而失活 24.绝对;立体 25.-1/Km;1/Vmax 26.二氢叶酸合成酶 27.比活力;总活力 28.微量;辅酶

29.溶解;水溶性维生素;脂溶性维生素

30.嘧啶;噻唑;亚甲基;TPP;脱羧酶;转酮酶 31.二甲基异咯嗪基;核糖醇基;1,10位氮

32.丁酸衍生物;β-丙氨酸;酰胺键;巯基乙胺;焦磷酸;3’-AMP;CoA;酰化;酰基 33.吡啶;烟酸;烟酰胺;NAD+;NADP+;脱氢;氢 34.尿素;噻吩;戊酸侧链;羧化酶;CO2

35.金属元素;咕啉环;核苷酸;5’-脱氧腺苷钴胺素;甲基钴胺素 36.羟化;解毒 (四)选择题

1.D:酶活性中心有一个结合部位和一个催化部位,分别决定专一性和催化效率,是酶分子发挥作用的一个关键性小区域。

2.B:酶是生物催化剂,在反应前后没有发生变化,酶之所以能使反应快速进行,就是它降低了反应的活化能。

3.B:酶的竞争性抑制剂与酶作用的底物的结构基本相似,所以它与底物竞争酶的活性中心,从而抑制酶的活性,阻止酶与底物反应。

4.A:竞争性可逆抑制剂抑制程度与底物浓度、抑制剂浓度、酶与抑制剂的亲和力、酶与底物的亲和力有关,与作用时间无关。

5.B:竞争性可逆抑制作用可用增加[S]的方法减轻抑制程度。 6.C:酶的竞争性可逆抑制剂可以使Vmax不变,Km增加。 7.E:磺胺类药物是竞争性可逆抑制剂。

8.D:蛋白激酶可以使ATP分子上的γ-磷酸转移到一种蛋白质的丝氨酸残基的羟基上,在磷酸基的转移过程中,常伴有酶蛋白活性的变化,例如肝糖原合成酶的磷酸化与脱磷酸化两种形式对糖原合成的调控是必需的。

9.A:His咪唑基的pK值在6.0~7.0之间,在生理条件下一半解离,一半未解离,解离的部分可以作为H+的受体,未解离的部分可以作为H+的供体。 10.C:对于非竞争性可逆抑制作用,抑制程度为50%时,[I]=Ki。

11.B:CoQ不属于维生素,CoA是维生素B3的衍生物,PLP是维生素B6的衍生物,FH2是维生素B11的衍生物,FMN是维生素B2的衍生物。

12.C:很多辅酶不包含维生素组分,如CoQ等;有些维生素不可以作为辅酶或辅酶的组分,如维生素E等;所有的B族维生素都可以作为辅酶或辅酶的组分,但并不是只有B族维生素可以作为辅酶或辅酶的组分,如维生素K也可以作为γ-羧化酶的辅酶。

13.A:维生素B1以辅酶TPP的形式参与代谢,TPP是丙酮酸脱氢酶系、α-酮戊二酸脱氢酶系、转酮酶等的辅酶,因此与糖代谢关系密切。多食糖类食物消耗的维生素B1增加,需要补充。

14.D:维生素B6以辅酶PLP,PMP的形式参与氨基酸代谢,是氨基酸转氨酶、脱羧酶和

67

消旋酶的辅酶,因此多食用蛋白质类食物消耗的维生素B6增加,需要补充。

15.C:玉米中缺少合成维生素B5的前体—色氨酸,因此以玉米为主食,容易导致维生素B5的缺乏。

16.D:CoA、ATP和胰岛素常作为能量合剂使用。

17.B:泛酸是B族维生素中唯一不含环状结构的化合物。 18.B:FMN是黄素单核苷酸,不含腺苷酸组分。

19.E:VB6以辅酶PLP,PMP的形式参与氨基酸代谢,是氨基酸转氨酶、脱羧酶和消旋酶的辅酶。

(五)是非判断题

1.错:酶促反应的初速度与底物浓度是有关的,当其它反应条件满足时,酶促反应的初速度与底物浓度成正比。

2.对:当底物足够时,酶浓度增加,酶促反应速度也加快,成正比。

3.对:Km是酶的特征性常数,反应的代谢产物可能影响酶性质的改变从而影响Km的变化,而这些代谢产物在结构上并不与底物一致。

4.对:调节酶大多数为变构酶,变构酶是利用构象的改变来调节其催化活性的酶,是一个关键酶,催化限速步骤,当少量底物与酶结合后,使酶的构象发生改变从而能结合更多的底物分子。

5.错:底物应该过量才能更准确的测定酶的活力。 6.对:产物生成量比底物消耗量更易测得且准确。

7.错:非竞争性抑制剂只和酶与底物反应的中间产物结合,酶促反应的Vmax是减小的,不能通过增加底物来达到正常的Vmax。而竞争性抑制剂可以通过增加底物的浓度来达到Vmax。

8.对:碘乙酸是糖酵解过程中的一个抑制剂,与半胱氨酸或蛋氨酸的-SH结合,使糖酵解途径受阻。

9.错:诱导物一般为酶的作用底物,可诱导细胞产生特定的诱导酶。

10.错:对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度,但不改变化学反应的平衡点。 11.对。

12.对:酶通过降低化学反应的活化能加快化学的反应速度,但不改变化学反应的平衡常数。

13.对:检查酶的含量及存在,不能直接用重量或体积来表示,常用它催化某一特定反应的能力来表示,即用酶的活力来表示,因此酶活力的测定实际上就是酶的定量测定。 14.错:Km值可以近似地反应酶与底物亲和力,Km越低,亲和力越高,因此已糖激酶对葡萄糖的亲和力更高。

15.对:Km是酶的特征常数之一,一般只与酶的性质有关,与酶浓度无关。不同的酶,Km值不同。 16.错:Km作为酶的特征常数,只是对一定的底物、一定的pH值、一定的温度条件而言。 17.错:见上题,同一种酶有几种底物就有几种Km值,其中Km值最小的底物一般称为酶的最适底物。 18.对。

19.对:当[S]>>Km时,V趋向于Vmax,因此v=K3[E],所以可以通过增加[E]来增加V。 20.错:酶的最适pH值有时因底物种类、浓度及缓冲液成分不同而不同,并不是一个常数。

21.错:酶最适温度与酶的作用时间有关,作用时间越长,则最适温度低,作用时间短,

68

则最适温度高。

22.对:金属离子作为酶的激活剂,有的可以相互取代,如Mg2+作为激酶等的激活剂可以被Mn2+取代;有的可以相互拮抗,如Na+抑制K+ 的激活作用。

23.对:不可逆抑制剂通常以比较牢固的共价键与酶结合,而使酶失活,不能用透析、超滤等物理方法除去抑制剂而恢复酶的活性,因此增加不可逆抑制剂的浓度,可以实现酶活性的完全抑制。

24.错:竞争性可逆抑制剂可以与酶的底物结合在酶的同一部位,也可以与酶的底物结合在酶的不同部位,由于空间位阻或构象改变的原因而不能同时结合。

25.错:因为不知道纯化前后的比活分别是多少,因此无法计算比活的提高倍数。 36.错:酶反应的最适pH值不仅取决于酶蛋白本身的结构,还与底物种类、浓度及缓冲液成分有关。

27.错:B族维生素中维生素B3不含环状结构,其余都是杂环化合物。 28.对:所有B族维生素都可以作为辅酶或辅酶的组分参与代谢。 29.错:维生素K可以作为γ-羟化酶的辅酶,促进凝血。

30.对:如酵母的生长需要维生素B6等,植物的生长也有需要维生素的现象。 31.对:如豌豆子叶可以合成维生素C,供整体使用;去除子叶后,则豌豆子叶生长不良。 32.错:维生素E极易被氧化,因此可做抗氧化剂。 (六)问答题及计算题(解题要点) 1.答:(1)酶能被酸、碱及蛋白酶水解,水解的最终产物都是氨基酸,证明酶是由氨基酸组成的。

(2)酶具有蛋白质所具有的颜色反应,如双缩脲反应、茚三酮反应、米伦反应、乙醛酸反应。

(3)一切能使蛋白质变性的因素,如热、酸碱、紫外线等,同样可以使酶变性失活。 (4)酶同样具有蛋白质所具有的大分子性质,如不能通过半透膜、可以电泳等。 (5)酶同其他蛋白质一样是两性电解质,并有一定的等电点。

总之,酶是由氨基酸组成的,与其他已知的蛋白质有着相同的理化性质,所以酶的化学本质是蛋白质。 2.答:(1)共性:用量少而催化效率高;仅能改变化学反应的速度,不改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。

(2)个性:酶作为生物催化剂的特点是催化效率更高,具有高度的专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。 3.(1)1982年,美国的T.Cech发现原生动物四膜虫的26S rRNA前体能够在完全没有蛋白质的情况下,自我加工、拼接,得到成熟的rRNA。 (2)1983年,S.Atman和Pace实验室研究RNase P时发现,将RNase P的蛋白质与RNA分离,分别测定,发现蛋白质部分没有催化活性,而RNA部分具有与全酶相同的催化活性。

(3)1986年,T.Cech发现在一定条件下,L19 RNA可以催化Poly C的切割与连接。 4.答:(1)绝对专一性;(2)相对专一性(族专一性);(3)相对专一性(键专一性); (4)立体专一性(旋光异构专一性);(5)立体专一性(顺反异构专一性);(6)立体专一性(识别从化学角度看完全对称的两个基团)。 5.答:(1)蛋白浓度=0.2×6.25mg/2mL=0.625mg/mL;

(2)比活力=(1500/60×1ml/0.1mL)÷0.625mg/mL=400U/mg; (3)总蛋白=0.625mg/mL×1000mL=625mg; (4)总活力=625mg×400U/mg=2.5×105U。

69

6.答:(1)V~[S]图是双曲线的一支,可以通过其渐近线求Vmax,V=1/2Vmax时对应的[S]为Km;优点是比较直观,缺点是实际上测定时不容易达到Vmax,所以测不准。 (2)1/V~1/[S]图是一条直线,它与纵轴的截距为1/Vmax,与横轴的截距为-1/Km,优点是使用方便,Vmax和Km都较容易求,缺点是实验得到的点一般集中在直线的左端,作图时直线斜率稍有偏差,Km就求不准。

(3)V~V/[S]图也是一条直线,它与纵轴的截距为Vmax,与横轴的截距为Vmax/Km,斜率即为-Km,优点是求Km比较方便,缺点是作图前计算较繁。

(4)[S]/V~[S]图也是一条直线,它与纵轴的截距为Km/Vmax,与横轴的截距为-Km,优缺点与V~V/[S]图相似。

(5)直接线性作图法是一组交于一点的直线,交点的横坐标为Km,纵坐标为Vmax,是求Vmax和Km的最好的一种方法,不需计算,作图方便,结果准确。 7.答:(1)一些肠道寄生虫如蛔虫等可以产生胃蛋白酶和胰蛋白酶的抑制剂,使它在动物体内不致被消化。

(2)蚕豆等某些植物种子含有胰蛋白酶抑制剂,煮熟后胰蛋白酶抑制剂被破坏,否则食用后抑制胰蛋白酶活性,影响消化,引起不适。

8.答:作1/V~1/[S]图,可知是竞争性可逆抑制剂。 9.答:(1)酶量(mmol)=1.2×5/150 000=4.0×10-5mmol;

(2)碘乙酰胺量(mmol)=3.0×10-2/185=1.6×10-4mmol,所以酶的催化亚基数为4。 10.答:据V~[S]的米氏曲线,当底物浓度大大低于Km值时,酶不能被底物饱和,从酶的利用角度而言,很不经济;当底物浓度大大高于Km值时,酶趋于被饱和,随底物浓度改变,反应速度变化不大,不利于反应速度的调节;当底物浓度在Km值附近时,反应速度对底物浓度的变化较为敏感,有利于反应速度的调节。

11.答:底物与别构酶的结合,可以促进随后的底物分子与酶的结合,同样竞争性抑制剂与酶的底物结合位点结合,也可以促进底物分子与酶的其它亚基的进一步结合,因此低浓度的抑制剂可以激活某些别构酶。 12.答:(1)当[S]=Km时,V=1/2Vmax,则Vmax=2×35=70μmol/min;

(2)因为V=Vmax/(1+Km/[s]),所以Km=(Vmax/V-1)[s]=1.5×10 -5mol/L; (3)因为[S]>>Km,[I],所以V=Vmax=70μmol/min; (4)V=Vmax/(1+[I]/Ki)=40μmol/min。

13.答:酶蛋白分子中组氨酸的侧链咪唑基pK值为6.0~7.0,在生理条件下,一半解离,一半不解离,因此既可以作为质子供体(不解离部分),又可以作为质子受体(解离部分),既是酸,又是碱,可以作为广义酸碱共同催化反应,因此常参与构成酶的活性中心。 14.答:(A)―(3)―(Ⅴ); (B)―(4)―(Ⅲ),(Ⅳ); (C)―(7)―(Ⅷ); (D)―(1)―(Ⅸ); (E)―(2)―(Ⅰ),(Ⅱ); (F)―(5)―(Ⅵ),(Ⅶ); (G)―(6)。

四川大学生物化学生物氧化部分考试题

70

(一)名词解释

1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain)

3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O)

5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charge) (二) 填空题

1. 生物氧化有3种方式:_________、___________和__________ 。

2. 生物氧化是氧化还原过程,在此过程中有_________、_________和________ 参与。 3.原核生物的呼吸链位于_________。

4,△G0'为负值是_________反应,可以_________进行。

5.△G0'与平衡常数的关系式为_________,当Keq=1时,△G0'为_________。 6.生物分子的E0'值小,则电负性_________,供出电子的倾向_________。

7.生物体内高能化合物有_________、_________、_________、_________、_________、_________等类。

8.细胞色素a的辅基是_________与蛋白质以_________键结合。 9.在无氧条件下,呼吸链各传递体都处于_________状态。

10.NADH呼吸链中氧化磷酸化的偶联部位是_________、_________、_________。 11.磷酸甘油与苹果酸经穿梭后进人呼吸链氧化,其P/O比分别为_____和_____。 12.举出三种氧化磷酸化解偶联剂_________、_________、_________。

13.举出4种生物体内的天然抗氧化剂_________、_________、_________、_________。 14.举出两例生物细胞中氧化脱羧反应_________、_________。

15.生物氧化是_________在细胞中_________,同时产生_________的过程。

16.反应的自由能变化用_________表示,标准自由能变化用_________表示,生物化学中pH 7.0时的标准自由能变化则表示为_________。

17.高能磷酸化合物通常指水解时_________的化合物,其中最重要的是_________,被称为能量代谢的_________。

18.真核细胞生物氧化的主要场所是_________,呼吸链和氧化磷酸化偶联因子都定位于_________。

19.以NADH为辅酶的脱氢酶类主要是参与_________作用,即参与从_________到_________电子传递作用;以NADPH为辅酶的脱氢酶类主要是将分解代谢中间产物上 的_________转移到_________反应中需电子的中间物上。

20.在呼吸链中,氢或电子从_________的载体依次向_________的载体传递。

21.线粒体氧化磷酸化的重组实验证实了线粒体内膜含有_________,内膜小瘤含有_________。

22.鱼藤酮,抗霉素A,CNˉ、N3ˉ、CO,的抑制作用分别是_________,_________,和_________。

23.磷酸源是指_________。脊椎动物的磷酸源是_________,无脊椎动物的磷酸源是_________。

24.H2S使人中毒机理是_________。

25.线粒体呼吸链中电位跨度最大的一步是在_________。

26.典型的呼吸链包括_________和_________两种,这是根据接受代谢物脱下的氢的

71

_________不同而区别的。 27.解释氧化磷酸化作用机制被公认的学说是_________,它是英国生物化学家_________于1961年首先提出的。

28.化学渗透学说主要论点认为:呼吸链组分定位于_________内膜上。其递氢体有_________作用,因而造成内膜两侧的_________差,同时被膜上_________合成酶所利用、促使ADP + Pi → ATP

29.每对电子从FADH2转移到_________必然释放出2个H+ 进入线粒体基质中。

30.细胞色素aa3辅基中的铁原子有_________结合配位键,它还保留_________游离配位键,所以能和_________结合,还能和_________、_________结合而受到抑制。 31.体内CO2的生成不是碳与氧的直接结合,而是_________。 32.线粒体内膜外侧的α-磷酸甘油脱氢酶的辅酶是_________;而线粒体内膜内侧的α-磷酸甘油脱氢酶的辅酶是_________。

33.动物体内高能磷酸化合物的生成方式有_________和_________两种。

34.在离体的线粒体实验中测得β-羟丁酸的磷氧比值(P/O)为2.4~2.8,说明β-羟丁酸氧化时脱下来的2H是通过_________呼吸链传递给O2的;能生成_________分子ATP。 (三) 选择题

1.如果质子不经过F1/F0-ATP合成酶回到线粒体基质,则会发生: A.氧化 B.还原 C.解偶联、 D.紧密偶联

2.离体的完整线粒体中,在有可氧化的底物存时下,加入哪一种物质可提高电子传递和氧气摄入量:

A.更多的TCA循环的酶 B.ADP C.FADH2 D.NADH 3.下列氧化还原系统中标准氧化还原电位最高的是:

A.延胡索酸琥珀酸 B.CoQ/CoQH2 C.细胞色素a(Fe 2+/Fe 3+) D.NAD+/NADH

4.下列化合物中,除了哪一种以外都含有高能磷酸键:

A.NAD+ B.ADP C.NADPH D.FMN 5.下列反应中哪一步伴随着底物水平的磷酸化反应:

A.苹果酸→草酰乙酸 B.甘油酸-1,3-二磷酸→甘油酸-3-磷酸 C.柠檬酸→α-酮戊二酸 D.琥珀酸→延胡索酸 6.乙酰CoA彻底氧化过程中的P/O值是:

A.2.0 B.2.5 C.3.0 D.3.5

7.肌肉组织中肌肉收缩所需要的大部分能量以哪种形式贮存:

A.ADP B.磷酸烯醇式丙酮酸 C.ATP D.磷酸肌酸 8.呼吸链中的电子传递体中,不是蛋白质而是脂质的组分为: A.NAD+ B.FMN C.CoQ D.Fe·S 9.下述哪种物质专一性地抑制F0因子:

A.鱼藤酮 B.抗霉素A C.寡霉素 D.缬氨霉素 10.胞浆中1分子乳酸彻底氧化后,产生ATP的分子数:

A.9或10 B.11或12 C.15或16 D.17或18 11.下列不是催化底物水平磷酸化反应的酶是:

A.磷酸甘油酸激酶 B.磷酸果糖激酶 C.丙酮酸激酶 D.琥珀酸硫激酶 12.在生物化学反应中,总能量变化符合: A.受反应的能障影响 B.随辅因子而变 C.与反应物的浓度成正比 D.与反应途径无关

72

13.在下列的氧化还原系统中,氧化还原电位最高的是:

A.NAD十/NADH B.细胞色素a (Fe3+)/细胞色素a (Fe2+) C.延胡索酸/琥珀酸 D.氧化型泛醌/还原型泛醌 14.二硝基苯酚能抑制下列细胞功能的是:

A.糖酵解 B.肝糖异生 C.氧化磷酸化 D.柠檬酸循环 15.活细胞不能利用下列哪些能源来维持它们的代谢:

A.ATP B.糖 C.脂肪 D.周围的热能 16.如果将琥珀酸(延胡索酸/琥珀酸氧化还原电位 + 0.03V)加到硫酸铁和硫酸亚铁(高铁/亚铁氧化还原电位 + 0.077V)的平衡混合液中,可能发生的变化是:

A.硫酸铁的浓度将增加 B.硫酸铁的浓度和延胡羧酸的浓度将增加 C.高铁和亚铁的比例无变化 D.硫酸亚铁和延胡索酸的浓度将增加 17.下列关于化学渗透学说的叙述哪一条是不对的:

A.吸链各组分按特定的位置排列在线粒体内膜上 B.各递氢体和递电子体都有质子泵的作用

C.H+返回膜内时可以推动ATP酶合成ATP D.线粒体内膜外侧H+不能自由返回膜内

18.关于有氧条件下,NADH从胞液进入线粒体氧化的机制,下列描述中正确的是: A.NADH直接穿过线粒体膜而进入

B.磷酸二羟丙酮被NADH还原成3-磷酸甘油进入线粒体,在内膜上又被氧化成磷酸二羟丙酮同时生成NADH

C.草酰乙酸被还原成苹果酸,进入线粒体再被氧化成草酰乙酸,停留于线粒体内

D.草酰乙酸被还原成苹果酸进人线粒体,然后再被氧化成草酰乙酸,再通过转氨基作用生成天冬氨酸,最后转移到线粒体外

19.胞浆中形成NADH+H+经苹果酸穿梭后,每摩尔产生ATP的摩尔数是: A.1 B.2 C.3 D.4 20.呼吸链的各细胞色素在电子传递中的排列顺序是:

A.c1→b→c→aa3→O2-; B.c→c1→b→aa3→O2-; C.c1→c→b→aa3→O2-; D. b→c1→c→aa3→O2-; (四) 是非判断题 ( )1.NADH在340nm处有吸收峰,NAD+ 没有,利用这个性质可将NADH与NAD+区分开来。 ( )2.琥珀酸脱氢酶的辅基FAD与酶蛋白之间以共价键结合。 ( )3.生物氧化只有在氧气的存在下才能进行。 ( )4.NADH和NADPH都可以直接进入呼吸链。

( )5.如果线粒体内ADP浓度较低,则加入DNP将减少电子传递的速率。

( )6.磷酸肌酸、磷酸精氨酸等是高能磷酸化合物的贮存形式,可随时转化为ATP供机体利用。

( )7.解偶联剂可抑制呼吸链的电子传递。

( )8.电子通过呼吸链时,按照各组分氧还电势依次从还原端向氧化端传递。 ( )9.NADPH / NADP+的氧还势稍低于NADH / NAD-----+,更容易经呼吸链氧化。 ( )10.寡霉素专一地抑制线粒体F1F0-ATPase的F0,从而抑制ATP的合成。 ( )11.ADP的磷酸化作用对电子传递起限速作用。

( )12.ATP虽然含有大量的自由能,但它并不是能量的贮存形式。 (五)完成反应方程式

1.4-细胞色素a3-Fe2+ + O2 + 4H+ → 4-细胞色素a3-Fe3+ +( )催化此反应的酶是:

73

( )

2.NADH + H+ + 0.5O2 + 3ADP + ( ) → NAD+ +3ATP + 4H2O (六)问答题(解题要点)

1.常见的呼吸链电子传递抑制剂有哪些?它们的作用机制是什么? 2.氰化物为什么能引起细胞窒息死亡?其解救机理是什么? 3.在磷酸戊糖途径中生成的NADPH,如果不去参加合成代谢,那么它将如何进一步氧化? 4.在体内ATP有哪些生理作用?

5.有人曾经考虑过使用解偶联剂如2,4-二硝基苯酚(DNP)作为减肥药,但很快就被放弃使用,为什么?

6.某些植物体内出现对氰化物呈抗性的呼吸形式,试提出一种可能的机制。 7.什么是铁硫蛋白?其生理功能是什么? 8.何为能荷?能荷与代谢调节有什么关系? 9.氧化作用和磷酸化作用是怎样偶联的? 参考答案:

(一)名词解释

1. 生物氧化: 生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。

2. 呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源。

3. 氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP磷酸化生成ATP的作用,称为氧化磷酸化。氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP的主要方式。

4. 磷氧比:电子经过呼吸链的传递作用最终与氧结合生成水,在此过程中所释放的能量用于ADP磷酸化生成ATP。经此过程消耗一个原子的氧所要消耗的无机磷酸的分子数(也是生成ATP的分子数)称为磷氧比值(P/O)。如NADH的磷氧比值是3,FADH2的磷氧比值是2。

5. 底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP。

如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在磷酸甘油激酶催化下形成ATP的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯醇式丙酮酸,在丙酮酸激酶催化形成ATP的反应均属底物水平的磷酸化反应。另外,在三羧酸环(TCA)中,也有一步反应属底物水平磷酸化反应,如α-酮戊二酸经氧化脱羧后生成高能化合物琥珀酰~CoA,其高能硫酯键在琥珀酰CoA合成酶的催化下转移给GDP生成GTP。然后在核苷二磷酸激酶作用下,GTP又将末端的高能磷酸根转给ADP生成ATP。

6.能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP系统的能量状态。 能荷=

74

(二)填空题

1.脱氢;脱电子;与氧结合 2.酶;辅酶;电子传递体 3.细胞质膜上 4.放能;自发进行

5.△G0'=-RTlnK'eq;0 6.大;大

7.焦磷酸化合物;酰基磷酸化合物;烯醇磷酸化合物;胍基磷酸化合物;硫酯化合物;甲硫键化合物

8.血红素A;非共价 9.还原

10.复合物I;复合物Ⅲ;复合物Ⅳ 11.2;3

12.2,4-二硝基苯酚;缬氨霉素;解偶联蛋白 13.维生素E;维生素C;GSH;β-胡萝卜素 14.丙酮酸脱氢酶;异柠檬酸脱氢酶;

15.燃料分子; 分解氧化; 可供利用的化学能 16.ΔG; ΔG°;ΔG°'

17.释放的自由能大于20.92kJ/mol;ATP;即时供体 18.线粒体;线粒体内膜上

19.呼吸;底物;氧;电子;生物合成 20.低氧还电势;高氧还电势

21.电子传递链的酶系;F1-F0复合体

22.NADH和CoQ之间 Cytb和Cytc1之间 Cytaa3和O2 23.贮存能量的物质;磷酸肌酸;磷酸精氨酸 24.与氧化态的细胞色素aa3结合,阻断呼吸链 25.细胞色素aa3→O2

26.NADH;FADH2;初始受体

27.化学渗透学说;米切尔(Mitchell) 28.线粒体;质子泵;氧化还原电位;ATP 29.CoQ

30.5个;1个;O2;CO;CN -。 31.有机酸脱羧生成的 32.NAD;FAD

33.氧化磷酸化;底物水平磷酸化 34.NADH呼吸链;3个分子ATP (三) 选择题

1.C:当质子不通过F0进人线粒体基质的时候,ATP就不能被合成,但电子照样进行传递,这就意味着发生了解偶联作用。

2.B:ADP作为氧化磷酸化的底物,能够刺激氧化磷酸化的速率,由于细胞内氧化磷酸化与电子传递之间紧密的偶联关系,所以ADP也能刺激电子的传递和氧气的消耗。

3.C:电子传递的方向是从标准氧化还原电位低的成分到标准氧化还原电位高的成分,细胞色素a(Fe 2+/Fe 3+))最接近呼吸链的末端,因此它的标准氧化还原电位最高。 4.D: NAD + 和NADPH的内部都含有ADP基团,因此与ADP一样都含有高能磷酸键,烯

75

醇式丙酮酸磷酸也含有高能磷酸键,只有FMN没有高能磷酸键。

5.B:甘油酸-1,3-二磷酸→甘油酸-3-磷酸是糖酵解中的一步反应,此反应中有ATP的合成。

6.C: 乙酰CoA彻底氧化需要消耗两分子氧气,即4个氧原子,可产生12分子的ATP,因此P/O值是12/4=3

7.D: 当ATP的浓度较高时,ATP的高能磷酸键被转移到肌酸分子之中形成磷酸肌酸。 8.C:CoQ含有一条由n个异戊二烯聚合而成的长链,具脂溶性,广泛存在于生物系统,又称泛醌。

9.C:寡霉素是氧化磷酸化抑制剂,它能与F0的一个亚基专一结合而抑制F-1,从而抑制了ATP的合成。

10.D:1分子乳酸彻底氧化经过由乳酸到丙酮酸的一次脱氢、丙酮酸到乙酰CoA和乙酰CoA再经三羧酸循环的五次脱氢,其中一次以FAD为受氢体,经氧化磷酸化可产生ATP为1×3+4×3+1×2=17,此外还有一次底物水平磷酸化产生1个ATP,因此最后产ATP为18个;而在真核生物中,乳酸到丙酮酸的一次脱氢是在细胞质中进行产生NADH,此NADH在经α-磷酸甘油穿棱作用进入线粒体要消耗1分子ATP,因此,对真核生物最后产ATP为17个。

11.B:磷酸甘油酸激酶、丙酮酸激酶与琥珀酸硫激酶分别是糖酵解中及三羧酸循环中的催化底物水平磷酸化的转移酶,只有磷酸果糖激酶不是催化底物水平磷酸化反应的酶。 12.D:热力学中自由能是状态函数,生物化学反应中总能量的变化不取决于反应途径。当反应体系处于平衡系统时,实际上没有可利用的自由能。只有利用来自外部的自由能,才能打破平衡系统。

13.B:由于电子是从低标准氧化还原电位向高标准氧化还原电位流动,而题目中所给的氧化还原对中,细胞色素aa3(Fe2十/Fe3+)在氧化呼吸链中处于最下游的位置,所以细胞色素aa3(Fe2十/Fe3+)的氧化还原电位最高。

14.C:二硝基苯酚抑制线粒体内的氧化磷酸化作用,使呼吸链传递电子释放出的能量不能用于ADP磷酸化生成ATP,所以二硝基苯酚是一种氧化磷酸化的解偶联剂。

15.D:脂肪、糖和ATP都是活细胞化学能的直接来源。阳光是最根本的能源,光子所释放的能量被绿色植物的叶绿素通过光合作用所利用。热能只有当它从热物体向冷物体传递过程中才能做功,它不能作为活细胞的可利用能源,但对细胞周围的温度有影响。 16.D:氧化还原电位是衡量电子转移的标准。延胡索酸还原成琥珀酸的氧化还原电位和标准的氢电位对比是+ 0.03V 特,而硫酸铁(高铁Fe3+)还原成硫酸亚铁(亚铁Fe2+)的氧化还原电位是+ 0.077V伏特,这样高铁对电子的亲和力比延胡索酸要大。所以加进去的琥珀酸将被氧化成延胡索酸,而硫酸铁则被还原成硫酸亚铁。延胡索酸和硫酸亚铁的量一定会增加。

17.B:化学渗透学说指出在呼吸链中递氢体与递电子体是交替排列的,递氢体有氢质子泵的作用,而递电子体却没有氢质子泵的作用。

18.D:线粒体内膜不允许NADH自由通过,胞液中NADH所携带的氢通过两种穿梭机制被其它物质带人线粒体内。糖酵解中生成的磷酸二羟丙酮可被NADH还原成3-磷酸甘油,然后通过线粒体内膜进人到线粒体内,此时在以FAD为辅酶的脱氢酶的催化下氧化,重新生成磷酸二羟丙酮穿过线粒体内膜回到胞液中。这样胞液中的NADH变成了线粒体内的FADH2。这种α-磷酸甘油穿梭机制主要存在于肌肉、神经组织。 另一种穿梭机制是草酰乙酸-苹果酸穿梭。这种机制在胞液及线粒体内的脱氢酶辅酶都是NAD+,所以胞液中的NADH到达线粒体内又生成NADH。就能量产生来看,草酰乙酸-苹果酸穿梭优于α-磷酸甘油穿梭机制;但α-磷酸甘油穿梭机制比草酰乙酸-苹果酸穿梭速

76

度要快很多。主要存在于动物的肝、肾及心脏的线粒体中。

19.C:胞液中的NADH经苹果酸穿梭到达线粒体内又生成NADH,因此,1分子NADH再经电子传递与氧化磷酸化生成3分子ATP。

20.D:呼吸链中各细胞色素在电子传递中的排列顺序是根据氧化还原电位从低到高排列的。

(四)是非判断题 1.对:

2.对:琥珀酸脱氢酶的辅基FAD与酶蛋白的一个组氨酸以共价键相连。 3.错:只要有合适的电子受体,生物氧化就能进行。

4.错:NADPH通常作为生物合成的还原剂,并不能直接进入呼吸链接受氧化。只是在特殊的酶的作用下,NADPH上的H被转移到NAD+上,然后由NADH进人呼吸链。

5.错:在正常的生理条件下,电子传递与氧化磷酸化是紧密偶联的,低浓度的ADP限制了氧化磷酸化,因而就限制了电子的传递速率。而DNP是一种解偶联剂,它可解除电子传递和氧化磷酸化的紧密偶联关系,在它的存在下,氧化磷酸化和电子传递不再偶联,因而ADP的缺乏不再影响到电子的传递速率。

6.对:磷酸肌酸在供给肌肉能量上特别重要,它作为储藏~P的分子以产生收缩所需要的ATP。当肌肉的ATP浓度高时,末端磷酸基团即转移到肌酸上产生磷酸肌酸;当ATP的供应因肌肉运动而消耗时,ADP浓度增高,促进磷酸基团向相反方向转移,即生成ATP。 7.错:解偶联剂使电子传递与氧化磷酸化脱节,电子传递释放的能量以热形式散发,不能形成ATP。

8.对:组成呼吸链的各成员有一定排列顺序和方向,即由低氧还电位到高氧还电位方向排列。

9.错:NADPH / NADP+的氧还势与NADH / NAD-----+相同,并且NADPH / NADP+通常不进入呼吸链,而主要是提供生物合成的还原剂。

10.对:寡霉素是氧化磷化抑制剂,它与F1F0-ATPase的F0结合而抑制F1,使线粒体内膜外侧的质子不能返回膜内,造成ATP不能合成。

11.对:在正常的生理条件下,电子传递与氧化磷酸化是紧密偶联的,因而ADP的氧化磷酸化作用就直接影响电子的传递速率。

12.对:在生物系统中ATP作为自由能的即时供体,而不是自由能的储藏形式。 (五)完成反应方程式

1.4-细胞色素a3-Fe2+ + O2 + 4H+ —→ 4-细胞色素a3-Fe3+ +(2H2O) 催化此反应的酶:(细胞色素氧化酶或末端氧化酶)

2.NADH + H+ + 0.5O2 + 3ADP + (3H3PO4) —→ NAD+ +3ATP + 4H2O (六) 问答题(解题要点)

1.答:常见的呼吸链电子传递抑制剂有: (1)鱼藤酮(rotenone)、阿米妥(amytal)、以及杀粉蝶菌素(piericidin-A),它们的作用是阻断电子由NADH向辅酶Q的传递。鱼藤酮是从热带植物(Derriselliptiee)的根中提取出来的化合物,它能和NADH脱氢酶牢固结合,因而能阻断呼吸链的电子传递。鱼藤酮对黄素蛋白不起作用,所以鱼藤酮可以用来鉴别NADH呼吸链与FADH2呼吸链。阿米妥的作用与鱼藤酮相似,但作用较弱,可用作麻醉药。杀粉蝶菌素A是辅酶Q的结构类似物,由此可以与辅酶Q相竞争,从而抑制电子传递。

(2)抗霉素A(antimycin A)是从链霉菌分离出的抗菌素,它抑制电子从细胞色素b到细胞色素c1的传递作用。

(3)氰化物、一氧化碳、叠氮化合物及硫化氢可以阻断电子细胞色素aa3向氧的传递作

77

用,这也就是氰化物及一氧化碳中毒的原因。

2.答:氰化钾的毒性是因为它进入人体内时,CNˉ的N原子含有孤对电子能够与细胞色素aa3的氧化形式——高价铁Fe3+以配位键结合成氰化高铁细胞色素aa3,使其失去传递电子的能力,阻断了电子传递给O2,结果呼吸链中断,细胞因窒息而死亡。而亚硝酸在体内可以将血红蛋白的血红素辅基上的Fe2+氧化为Fe3+。部分血红蛋白的血红素辅基上的Fe2+被氧化成Fe3+——高铁血红蛋白,且含量达到20%-30%时,高铁血红蛋白(Fe3+)也可以和氰化钾结合,这就竞争性抑制了氰化钾与细胞色素aa3的结合,从而使细胞色素aa3的活力恢复;但生成的氰化高铁血红蛋白在数分钟后又能逐渐解离而放出CNˉ。因此,如果在服用亚硝酸的同时,服用硫代硫酸钠,则CNˉ可被转变为无毒的SCNˉ,此硫氰化物再经肾脏随尿排出体外。

3.答:葡萄糖的磷酸戊糖途径是在胞液中进行的,生成的NADPH具有许多重要的生理功能,其中最重要的是作为合成代谢的供氢体。如果不去参加合成代谢,那么它将参加线粒体的呼吸链进行氧化,最终与氧结合生成水。但是线粒体内膜不允许NADPH和NADH通过,胞液中NADPH所携带的氢是通过转氢酶催化过程进人线粒体的: (1)NADPH + NAD+ → NADP十 + NADH

(2)NADH所携带的氢通过两种穿梭作用进人线粒体进行氧化: a α-磷酸甘油穿梭作用;进人线粒体后生成FADH2。 b 苹果酸穿梭作用;进人线粒体后生成NADH。 4.答:ATP在体内有许多重要的生理作用:

(1)是机体能量的暂时贮存形式:在生物氧化中,ADP能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP的方式贮存起来,因此ATP是生物氧化中能量的暂时贮存形式。

(2)是机体其它能量形式的来源:ATP分子内所含有的高能键可转化成其它能量形式,以维持机体的正常生理机能,例如可转化成机械能、生物电能、热能、渗透能、化学合成能等。体内某些合成反应不一定都直接利用ATP供能,而以其他三磷酸核苷作为能量的直接来源。如糖原合成需UTP供能;磷脂合成需CTP供能;蛋白质合成需GTP供能。这些三磷酸核苷分子中的高能磷酸键并不是在生物氧化过程中直接生成的,而是来源于ATP。

(3)可生成cAMP参与激素作用:ATP在细胞膜上的腺苷酸环化酶催化下,可生成cAMP,作为许多肽类激素在细胞内体现生理效应的第二信使。

5.答:DNP作为一种解偶联剂,能够破坏线粒体内膜两侧的质子梯度,使质子梯度转变为热能,而不是ATP。在解偶联状态下,电子传递过程完全是自由进行的,底物失去控制地被快速氧化,细胞的代谢速率将大幅度提高。这些将导致机体组织消耗其存在的能源形式,如糖原和脂肪,因此有减肥的功效。但是由于这种消耗是失去控制的消耗,同时消耗过程中过分产热,这势必会给机体带来强烈的副作用。

6.答:某些植物体内出现对氰化物呈抗性的呼吸形式,这种呼吸形式可能并不需要细胞色素氧化酶,而是通过其他的对氰化物不敏感的电子传递体将电子传递给氧气。

7.答:铁硫蛋白是一种非血红素铁蛋白,其活性部位含有非血红素铁原子和对酸不稳定的硫原子,此活性部位被称之为铁硫中心。铁硫蛋白是一种存在于线粒体内膜上的与电子传递有关的蛋白质。铁硫蛋白中的铁原子与硫原子通常以等摩尔量存在,铁原子与蛋白质的四个半胱氨酸残基结合。根据铁硫蛋白中所含铁原子和硫原子的数量不同可分为三类:FeS中心、Fe2-S2中心和Fe4-S4中心。在线粒体内膜上,铁硫蛋白和递氢体或递电子体结合为蛋白复合体,已经证明在呼吸链的复合物I、复合物Ⅱ、复合物Ⅲ中均结合有铁硫蛋白,其功能是通过二价铁离子和三价铁离子的化合价变化来传递电子,而且每

78

次只传递一个电子,是单电子传递体。

8.答:细胞内存在着三种经常参与能量代谢的腺苷酸,即ATP、ADP和AMP。这三种腺苷酸的总量虽然很少,但与细胞的分解代谢和合成代谢紧密相联。三种腺苷酸在细胞中各自的含量也随时在变动。生物体中ATP-ADP-AMP系统的能量状态(即细胞中高能磷酸状态)在数量上衡量称能荷。

能荷的大小与细胞中ATP、ADP和AMP的相对含量有关。当细胞中全部腺苷酸均以ATP形式存在时,则能荷最大,为100‟,即能荷为满载。当全部以AMP形式存在时,则能荷最小,为零。当全部以ADP形式存在时,能荷居中,为50%。若三者并存时,能荷则随三者含量的比例不同而表现不同的百分值。通常情况下细胞处于80‟的能荷状态。

能荷与代谢有什么关系呢?研究证明,细胞中能荷高时,抑制了ATP的生成,但促进了ATP的利用,也就是说,高能荷可促进分解代谢,并抑制合成代谢。相反,低能荷则促进合成代谢,抑制分解代谢。 能荷调节是通过ATP、ADP和AMP分子对某些酶分子进行变构调节进行的。例如糖酵解中,磷酸果糖激酶是一个关键酶,它受ATP的强烈抑制,但受ADP和AMP促进。丙酮酸激酶也是如此。在三羧酸环中,丙酮酸脱氢酶、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶等,都受ATP的抑制和ADP的促进。呼吸链的氧化磷酸化速度同样受ATP抑制和ADP促进。

9.答:目前解释氧化作用和磷酸化作用如何偶联的假说有三个,即化学偶联假说、结构偶联假说与化学渗透假说。其中化学渗透假说得到较普遍的公认。该假说的主要内容是: (1)线粒体内膜是封闭的对质子不通透的完整内膜系统。

(2)电子传递链中的氢传递体和电子传递体是交叉排列,氢传递体有质子(H+)泵的作用,在电子传递过程中不断地将质子(H+)从内膜内侧基质中泵到内膜外侧。

(3)质子泵出后,不能自由通过内膜回到内膜内侧,这就形成内膜外侧质子(H+)浓度高于内侧,使膜内带负电荷,膜外带正电荷,因而也就形成了两侧质子浓度梯度和跨膜电位梯度。这两种跨膜梯度是电子传递所产生的电化学电势,是质子回到膜内的动力,称质子移动力或质子动力势。

(4)一对电子(2eˉ)从NADH传递到O2的过程中共有3对H十从膜内转移到膜外。复合物Ⅰ、Ⅲ、Ⅳ着质子泵的作用,这与氧化磷酸化的三个偶联部位一致,每次泵出2个H十。

(5)质子移动力是质子返回膜内的动力,是ADP磷酸化成ATP的能量所在,在质子移动力驱使下,质子(H+)通过F1F0-ATP合酶回到膜内,同时ADP磷酸化合戚ATP。

四川大学生物化学生物氧化部分考试题

(一)名词解释:

1.糖异生 (glycogenolysis) 2.Q酶 (Q-enzyme)

3.乳酸循环 (lactate cycle) 4.发酵 (fermentation)

5.变构调节 (allosteric regulation) 6.糖酵解途径 (glycolytic pathway) 7.糖的有氧氧化 (aerobic oxidation) 8.肝糖原分解 (glycogenolysis)

9.磷酸戊糖途径 (pentose phosphate pathway)

79

10.D-酶(D-enzyme)

11.糖核苷酸(sugar-nucleotide) (二)英文缩写符号:

1.UDPG(uridine diphosphate-glucose) 2.ADPG(adenosine diphosphate-glucose) 3.F-D-P(fructose-1,6-bisphosphate) 4.F-1-P(fructose-1-phosphate) 5.G-1-P(glucose-1-phosphate) 6.PEP(phosphoenolpyruvate) (三)填空题 1.α淀粉酶和 β–淀粉酶只能水解淀粉的_________键,所以不能够使支链淀粉完全水解。

2.1分子葡萄糖转化为2分子乳酸净生成______________分子ATP

3.糖酵解过程中有3个不可逆的酶促反应,这些酶是__________、 ____________ 和_____________。

4.糖酵解抑制剂碘乙酸主要作用于___________酶。

5.调节三羧酸循环最主要的酶是____________、__________ _、______________。 6.2分子乳酸异升为葡萄糖要消耗_________ATP。

7.丙酮酸还原为乳酸,反应中的NADH来自于________的氧化。

8.延胡索酸在________________酶作用下,可生成苹果酸,该酶属于EC分类中的_________酶类。

9 磷酸戊糖途径可分为______阶段,分别称为_________和_______,其中两种脱氢酶是_______和_________,它们的辅酶是_______。

10 ________是碳水化合物在植物体内运输的主要方式。

11.植物体内蔗糖合成酶催化的蔗糖生物合成中葡萄糖的供体是__________ ,葡萄糖基的受体是___________ ;

12.糖酵解在细胞的_________中进行,该途径是将_________转变为_______,同时生成________和_______的一系列酶促反应。 13.淀粉的磷酸解过程通过_______酶降解 α–1,4糖苷键,靠 ________和________ 酶降解α–1,6糖苷键。

14.TCA循环中有两次脱羧反应,分别是由__ _____和________催化。 15.乙醛酸循环中不同于TCA循环的两个关键酶是_________和________。

16.乳酸脱氢酶在体内有5种同工酶,其中肌肉中的乳酸脱氢酶对__________ 亲和力特别高,主要催化___________反应。 17在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是_______________ 和________________

18.糖异生的主要原料为______________、_______________和________________。 19.参与 α-酮戊二酸氧化脱羧反应的辅酶为___________,_______________,_______________,_______________和_______________。

20.在磷酸戊糖途径中催化由酮糖向醛糖转移二碳单位的酶为_____________,其辅酶为______________;催化由酮糖向醛糖转移三碳单位的酶为___________。

21.α–酮戊二酸脱氢酶系包括3种酶,它们是__________,____________,_____________。

22.催化丙酮酸生成磷酸烯醇式丙酮酸的酶是__________,它需要______________和

80

__________作为辅因子。

23.合成糖原的前体分子是_________,糖原分解的产物是______________。

24.植物中淀粉彻底水解为葡萄糖需要多种酶协同作用,它们是__________,___________,_____________,____________。

25.将淀粉磷酸解为G-1-P,需_________,__________,__________三种酶协同作用。 26.糖类除了作为能源之外,它还与生物大分子间___________有关,也是合成__________,___________,_____________等的碳骨架的共体。 (四)选择题

1.由己糖激酶催化的反应的逆反应所需要的酶是:

A.果糖二磷酸酶 B.葡萄糖-6-磷酸酶 C.磷酸果糖激酶 D.磷酸化酶

2.正常情况下,肝获得能量的主要途径:

A.葡萄糖进行糖酵解氧化 B.脂肪酸氧化 C.葡萄糖的有氧氧化 D.磷酸戊糖途径 E.以上都是。 3.糖的有氧氧化的最终产物是:

A.CO2+H2O+ATP B.乳酸 C.丙酮酸 D.乙酰CoA 4.需要引物分子参与生物合成反应的有:

A.酮体生成 B.脂肪合成 C.糖异生合成葡萄糖 D.糖原合成 E.以上都是

5.在原核生物中,一摩尔葡萄糖经糖有氧氧化可产生ATP摩尔数: A.12 B.24 C.36 D.38 6.植物合成蔗糖的主要酶是:

A.蔗糖合酶 B.蔗糖磷酸化酶 C.蔗糖磷酸合酶 D.转化酶 7.不能经糖异生合成葡萄糖的物质是:

A.α-磷酸甘油 B.丙酮酸 C.乳酸 D.乙酰CoA E.生糖氨基酸 8.丙酮酸激酶是何途径的关键酶:

A.磷酸戊糖途径 B.糖异生 C.糖的有氧氧化 D.糖原合成与分解 E.糖酵解 9.丙酮酸羧化酶是那一个途径的关键酶:

A.糖异生 B.磷酸戊糖途径 C.胆固醇合成 D.血红素合成 E.脂肪酸合成

10.动物饥饿后摄食,其肝细胞主要糖代谢途径:

A.糖异生 B.糖有氧氧化 C.糖酵解 D.糖原分解 E.磷酸戊糖途径

11.下列各中间产物中,那一个是磷酸戊糖途径所特有的? A.丙酮酸 B.3-磷酸甘油醛 C.6-磷酸果糖 D.1,3-二磷酸甘油酸 E.6-磷酸葡萄糖酸 12.糖蛋白中蛋白质与糖分子结合的键称:

A.二硫键 B.肽键 C.脂键 D.糖肽键 E.糖苷键, 13.三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是:

A.糖异生 B.糖酵解 C.三羧酸循环 D.磷酸戊糖途径 E.糖的有氧氧化

14.关于三羧酸循环那个是错误的

A.是糖、脂肪及蛋白质分解的最终途径 B.受ATP/ADP比值的调节

81

C.NADH可抑制柠檬酸合酶 D.NADH氧经需要线粒体穿梭系统。 15.三羧酸循环中哪一个化合物前后各放出一个分子CO2:

A.柠檬酸 B.乙酰CoA C.琥珀酸 D.α-酮戊二酸 16.磷酸果糖激酶所催化的反应产物是:

A.F-1-P B.F-6-P C.F-D-P D.G-6-P 17.醛缩酶的产物是:

A.G-6-P B.F-6-P C.F-D-P D.1,3-二磷酸甘油酸

18.TCA循环中发生底物水平磷酸化的化合物是?

A.α-酮戊二酸 B.琥珀酰 C.琥珀酸CoA D.苹果酸 19.丙酮酸脱氢酶系催化的反应不涉及下述哪种物质?

A.乙酰CoA B.硫辛酸 C.TPP D.生物素 E.NAD+ 20.三羧酸循环的限速酶是:

A.丙酮酸脱氢酶 B.顺乌头酸酶 C.琥珀酸脱氢酶 D.延胡索酸酶 E.异柠檬酸脱氢酶 21.生物素是哪个酶的辅酶:

A.丙酮酸脱氢酶 B.丙酮酸羧化酶 C.烯醇化酶 D.醛缩酶 E.磷酸烯醇式丙酮酸羧激酶

22.三羧酸循环中催化琥珀酸形成延胡索酸的酶是琥珀酸脱氢酶,此酶的辅因子是 A.NAD+ B.CoASH C.FAD D.TPP E.NADP+ 23.下面哪种酶在糖酵解和糖异生中都起作用:

A.丙酮酸激酶 B.丙酮酸羧化酶 C.3-磷酸甘油醛脱氢酶 D.己糖激酶 E.果糖1,6-二磷酸酯酶

24.原核生物中,有氧条件下,利用1摩尔葡萄糖生成的净ATP摩尔数与在无氧条件下利用1摩尔生成的净ATP摩尔数的最近比值是:

A.2:1 B.9:1 C.18:1 D.19:1 E.25:1 25.催化直链淀粉转化为支链淀粉的酶是:

A.R-酶 B.D-酶 C.Q-酶 D.α-1,6-糖苷酶 E.淀粉磷酸化酶 26.淀粉酶的特征是:

A.耐70℃左右的高温 B.不耐70℃左右的高温 C.属巯基酶 D.在pH3时稳定 27.糖酵解时哪一对代谢物提供P使ADP生成ATP:

A.3-磷酸甘油醛及磷酸烯醇式丙酮酸 B.1,3-二磷酸甘油酸及磷酸烯醇式丙酮酸

C.1-磷酸葡萄糖及1,6-二磷酸果糖 D.6-磷酸葡萄糖及2-磷酸甘油酸 28.在有氧条件下,线粒体内下述反应中能产生FADH2步骤是:

A.琥珀酸→延胡索酸 B.异柠檬酸→α-酮戊二酸 C.α-戊二酸→琥珀酰CoA D.苹果酸→草酰乙酸 29.丙二酸能阻断糖的有氧氧化,因为它:

(A)抑制柠檬酸合成酶 (B)抑制琥珀酸脱氢酶 (C)阻断电子传递 (D)抑制丙酮酸脱氢酶 30.由葡萄糖合成糖原时,每增加一个葡萄糖单位消耗高能磷酸键数为:

(A)1 (B)2 (C)3 (D)4 (E)5

82

(五)是非判断题

( )1.α-淀粉酶和-淀粉酶的区别在于α-淀粉酶水解-1,4糖苷键,β-淀粉酶水解β-1,4糖苷键。

( )2.麦芽糖是由葡萄糖与果糖构成的双糖。 ( )3.ATP是果糖磷酸激酶的变构抑制剂。

( )4.沿糖酵解途径简单逆行,可从丙酮酸等小分子前体物质合成葡萄糖。 ( )5.所有来自磷酸戊糖途径的还原能都是在该循环的前三步反应中产生的。 ( )6.发酵可以在活细胞外进行。

( )7.催化ATP分子中的磷酰基转移到受体上的酶称为激酶。 ( )8.动物体内的乙酰CoA不能作为糖异生的物质。 ( )9.柠檬酸循环是分解与合成的两用途径。

( )10.在糖类物质代谢中最重要的糖核苷酸是CDPG。

( )11.淀粉,糖原,纤维素的生物合成均需要“引物”存在。 ( )12.联系糖原异生作用与三羧酸循环的酶是丙酮酸羧化酶。

( )13.糖异生作用的关键反应是草酰乙酸形成磷酸烯醇式丙酮酸的反应。 ( )14.糖酵解过程在有氧无氧条件下都能进行。

( )15.在缺氧条件下,丙酮酸还原为乳酸的意义是使NAD+再生。

( )16.在高等植物中淀粉磷酸化酶既可催化α-1,4糖苷键的形成,又可催化α-1,4糖苷键的分解。

( )17.TCA中底物水平磷酸化直接生成的是ATP。 ( )18.三羧酸循环的中间产物可以形成谷氨酸。

( )19.在植物体内,蔗糖的合成主要是通过蔗糖磷酸化酶催化的。 (六)完成反应式:

1.丙酮酸 + CoASH + NAD+ → 乙酰CoA + CO2 +( ) 催化此反应的酶和其它辅因子:( )( )( )( )

2.α-酮戊二酸 + NAD+ + CoASH → ( )+ NADH + CO2 催化此反应的酶和其它辅因子:( )( )( )( )

3.7-磷酸景天庚酮糖 + 3-磷酸甘油醛 → 6-磷酸-果糖 + ( ) 催化此反应的酶:( )

4.丙酮酸 + CO2 + ( ) + H2O → ( ) + ADP + Pi + 2H 催化此反应的酶:( ) 5.( ) + F-6-P → 磷酸蔗糖 + UDP 催化此反应的酶是:( ) (七)问答题

1.糖类物质在生物体内起什么作用?

2.为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共通路? 3.糖代谢和脂代谢是通过那些反应联系起来的? 4.什么是乙醛酸循环?有何意义? 5.磷酸戊糖途径有什么生理意义?

6.为什么糖酵解途径中产生的NADH必须被氧化成NAD+才能被循环利用?

7.糖分解代谢可按EMP-TCA途径进行,也可按磷酸戊糖途径,决定因素是什么? 8.试说明丙氨酸的成糖过程。

9.糖酵解的中间物在其它代谢中有何应用? 10.琥珀酰CoA的代谢来源与去路有哪些?

83

(一)名词解释:

1.糖异生:非糖物质(如丙酮酸 乳酸 甘油 生糖氨基酸等)转变为葡萄糖的过程。 2.Q酶:Q酶是参与支链淀粉合成的酶。功能是在直链淀粉分子上催化合成 (α-1, 6)糖苷键,形成支链淀粉。

3.乳酸循环乳:酸循环是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,通过糖异生作用肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用,这样形成的循环称乳酸循环。 4.发酵:厌氧有机体把糖酵解生成NADH中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精发酵。如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵。 5.变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象发生改变,从而改变酶的活性,称酶的变构调节。

6.糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,是体内糖代谢最主要途径。

7.糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧条件下氧化成水和二氧化碳的过程。是糖氧化的主要方式。

8.肝糖原分解:肝糖原分解指肝糖原分解为葡萄糖的过程。

9.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。

10.D-酶:一种糖苷转移酶,作用于α-1,4糖苷键,将一个麦芽多糖的片段转移到葡萄糖、麦芽糖或其它多糖上。

11.糖核苷酸:单糖与核苷酸通过磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体。 (二)英文缩写符号:

1.UDPG:尿苷二磷酸葡萄糖,是合成蔗糖时葡萄糖的供体。 2.ADPG:腺苷二磷酸葡萄糖,是合成淀粉时葡萄糖的供体。

3.F-D-P:1,6-二磷酸果糖,由磷酸果糖激酶催化果糖-1-磷酸生成,属于高能磷酸化合物,在糖酵解过程生成。

4.F-1-P:果糖-1-磷酸,由果糖激酶催化果糖生成,不含高能磷酸键。 5.G-1-P:葡萄糖-1-磷酸。由葡萄糖激酶催化葡萄糖生成,不含高能键。

6.PEP:磷酸烯醇式丙酮酸,含高能磷酸键,属于高能磷酸化合物,在糖酵解过程生成。 (三)填空题

1.α-1,4糖苷键 2.2个ATP

3.己糖激酶;果糖磷酸激酶;丙酮酸激酶 4.磷酸甘油醛脱氢酶

5.柠檬酸合成酶;异柠檬酸脱氢酶;α– 酮戊二酸脱氢酶 6.6个ATP

7.甘油醛3-磷酸

8.延胡索酸酶;氧化还原酶

9.两个;氧化阶段;非氧化阶段;6-磷酸葡萄糖脱氢酶;6-磷酸葡萄糖酸脱氢酶;NADP 10.蔗糖

11.UDPG;果糖

12.细胞质;葡萄糖;丙酮酸;ATP NADH 13.淀粉磷酸化酶;转移酶;α-1,6糖苷酶

84

14.异柠檬酸脱氢酶;α- 酮戊二酸脱氢酶 15.异柠檬酸裂解酶;苹果酸合成酶 16.丙酮酸;丙酮酸→乳酸

17.1,3-二磷酸甘油酸;磷酸烯醇式丙酮酸 18.乳酸;甘油;氨基酸

19.TPP;NAD+;FAD;CoA;硫辛酸;Mg 20.转酮醇酶;TPP;转醛醇酶

21.α-酮戊二酸脱氢酶;琥珀酰转移酶;二氢硫辛酸脱氢酶 22.磷酸烯醇式丙酮酸激酶;ATP;GTP 23.UDP-葡萄糖;G-1-P

24.α-淀粉酶;β–淀粉酶;R酶;麦芽糖酶 25.淀粉磷酸化酶;转移酶;脱支酶 26.识别;蛋白质;核酸;脂肪 (四)选择题

1.B:该步骤是不可逆步骤逆反应由葡萄糖-6-磷酸酶催化。 2.B:

3.A:三羧酸循环最终消耗2个乙酰CoA释放2个CO2,产生的H+被NAD+和FAD接受生成NADH+H+和FADH2,进入电子传递链通过氧化磷酸化作用生成水和ATP 4.D:糖原,纤维素和淀粉合成反应需引物分子参与。 5.D:由葡萄糖生成丙酮酸产生8个ATP,丙酮酸生成乙酰CoA可产生3个ATP,乙酰CoA进入三羧酸循环可生成12个ATP,2个丙酮酸可15个ATP,共生成38个ATP。 6.C:

7.D:乙酰CoA只能进入三羧酸循环分解,不能经糖异生合成葡萄糖。 8.E:丙酮酸激酶是糖酵解途径的3个关键酶之一。

9.A:丙酮酸羧化酶是糖异生途径的关键酶,催化丙酮酸生成草酰乙酸的反应。 10.B:人在饥饿后摄食,肝细胞的主要糖代谢是糖的有氧氧化以产生大量的能量。 11.E:6-磷酸葡萄糖酸是磷酸戊糖途径所特有的其它都是糖酵解的中间产物。 12.D:糖蛋白中糖和蛋白质连接的键称糖肽键。

13.D:在磷酸戊糖途径的非氧化阶段发生三碳糖,六碳糖和九碳糖的相互转换。 14.D:

15.D:三羧酸循环共生成2个CO2,分别在生成-酮戊二酸的反应和它的下一步释放。 16.C:

17.C:醛缩酶催化的是可逆反应,可催化磷酸二羟丙酮和3-磷酸甘油醛生成果糖1,6-二磷酸。

18.C:三羧酸循环中只有一步底物水平磷酸化,就是琥珀酰CoA生成琥珀酸的反应。 19.D:丙酮酸脱氢酶催化丙酮酸生成乙酰CoA,需要的辅酶是NAD+,CoA,TPP,FAD,硫辛酸。

20.E:异柠檬酸脱氢酶催化的反应是三羧酸循环过程的三个调控部位之一。 21.B:生物素是羧化酶的辅酶,这里只有丙酮酸羧化酶需要生物素作为辅酶。

22.C:在三羧酸循环过程中,发生氧化还原反应的酶中,只有琥珀酸脱氢酶的辅因子是FAD。

23.C:在糖酵解和糖异生过程都发生反应的酶是在糖酵解中催化可逆反应步骤的酶,这里只有3-磷酸甘油醛脱氢酶。

24.D:在有氧的情况下1摩尔葡萄糖氧化生成38个ATP,在无氧条件下生成2个ATP,

85

二者比值是19:1。

25.C:催化直链淀粉转化为支链淀粉的酶是Q酶,而催化支链淀粉脱支的酶是R酶。 26.A:α-淀粉酶和的区别是前者耐70℃高温,而后者耐酸,β--淀粉酶是巯基酶。 27.B:在糖酵解过程发生了两次底物水平磷酸化反应,一次是1,3-二磷酸甘油酸生成3-磷酸甘油酸的反应,另外是磷酸烯醇式丙酮酸生成丙酮酸的反应。

28.C:由-酮戊二酸生成琥珀酰CoA产生一个NADH,由琥珀酰CoA生成琥珀酸的反应产生一个GTP

39.B:丙二酸是琥珀酸的竞争性抑制剂,竞争与琥珀酸脱氢酶结合。

30.B由葡萄生成6-磷酸葡萄糖消耗一个高能磷酸键。1-磷酸葡萄糖转变成UDPG,然后UDP脱落,相当于1分子UTP转化为UDP,消耗一个高能磷酸键 (三)是非判断题

1.错:α-淀粉酶和β-淀粉酶的区别是α-淀粉酶耐70度的高温,β-淀粉酶耐酸。 2.错:麦芽糖是葡萄糖与葡萄糖构成的双糖

3.对:磷酸果糖激酶是变构酶,其活性被ATP抑制,ATP的抑制作用可被AMP所逆转,此外,磷酸果糖激酶还被柠檬酸所抑制。

4.错:糖异生并不是糖酵解的简单逆行,其中的不可逆步骤需要另外的酶催化完成。 5.对:戊糖磷酸途径分为氧化阶段和非氧化阶段,氧化阶段的3步反应产生还原能,非氧化阶段进行分子重排,不产生还原能。 6.对: 7.对:

8.对:动物体内不存在乙醛酸循环途径,不能将乙酰CoA转化成糖。

9.对:三羧酸循环中间产物可以用来合成氨基酸,草酰乙酸可经糖异生合成葡萄糖,糖酵解形成的丙酮酸,脂肪酸氧化生成的乙酰CoA及谷氨酸和天冬氨酸脱氨氧化生成的-酮戊二酸和草酰乙酸都经三羧酸循环分解。

10.错:糖异生的关键反应是丙酮酸生成草酰乙酸的反应由丙酮酸羧化酶催化,丙酮酸羧化酶是变构酶,受乙酰CoA 的调控。 11.对:

12.对:丙酮酸羧化酶是变构酶,受乙酰CoA的变构调节,在缺乏乙酰CoA时没有活性,细胞中的ATP/ADP的比值升高促进羧化作用。草酰乙酸既是糖异生的中间产物,又是三羧酸循环的中间产物。高含量的乙酰CoA使草酰乙酸大量生成。若ATP含量高则三羧酸循环速度降低,糖异生作用加强。

13.错:在植物体内,蔗糖的合成主要是通过磷酸蔗糖合成酶途径。

14.对:糖酵解是由葡萄糖生成丙酮酸的过程,它是葡萄糖有氧氧化和无氧发酵的共同途径。 15.对:

16.对:淀粉磷酸化酶催化的反应是可逆反应,正反应催化α-1,4糖苷键的合成,逆反应催化α-1,4糖苷键的分解。

17.错:TCA中底物水平磷酸化直接生成的是GTP,相当于一个ATP。 18.对:三羧酸循环的中间产物-酮戊二酸经转氨作用生成谷氨酸。 19.错:在糖代谢中最重要糖核苷酸是UDPG。 (六)完成反应式:

1.丙酮酸 + CoASH + NAD+ → 乙酰CoA + CO2 +(NADH + H+) 催化此反应的酶和其它辅因子:(丙酮酸脱氢酶)(TPP)(FAD)(Mg2+) 2.α-酮戊二酸 + NAD+ + CoASH → (琥珀酰-S-CoA )+ NADH + CO2

86

催化此反应的酶和其它辅因子:(α-酮戊二酸脱氢酶)(TPP)(FAD)(Mg2+) 3.7-磷酸景天庚酮糖 + 3-磷酸甘油醛 → 6-磷酸-果糖 + ( 4-磷酸赤藓糖 ) 催化此反应的酶:(转醛酶)

4.丙酮酸 CO2 + (ATP) + H2O → (草酰乙酸) + ADP + Pi + 2H 催化此反应的酶:(丙酮酸羧化酶) 5.(UDPG) + F-6-P → 磷酸蔗糖 + UDP 催化此反应的酶:(蔗糖磷酸合酶) (七)问答题(解题要点) 1.答:(1)糖类物质是异氧生物的主要能源之一,糖在生物体内经一系列的降解而释放大量的能量,供生命活动的需要。

(2)糖类物质及其降解的中间产物,可以作为合成蛋白质 脂肪的碳架及机体其它碳素的来源。

(3)在细胞中糖类物质与蛋白质 核酸 脂肪等常以结合态存在,这些复合物分子具有许多特异而重要的生物功能。

(4)糖类物质还是生物体的重要组成成分。 2.答:(1)三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。 (2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。

(3)脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA可进入三羧酸循环氧化。

(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。所以,三羧酸循环是三大物质代谢共同通路。 3.答:(1)糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料。

(2)有氧氧化过程中产生的乙酰CoA是脂肪酸和酮体的合成原料。 (3)脂肪酸分解产生的乙酰CoA最终进入三羧酸循环氧化。 (4)酮体氧化产生的乙酰CoA最终进入三羧酸循环氧化。

(5)甘油经磷酸甘油激酶作用后,转变为磷酸二羟丙酮进入糖代谢。

4.答:乙醛酸循环是有机酸代谢循环,它存在于植物和微生物中,可分为五步反应,由于乙醛酸循环与三羧酸循环有一些共同的酶系和反应,将其看成是三羧酸循环的一个支路。循环每一圈消耗2分子乙酰CoA,同时产生1分子琥珀酸。琥珀酸产生后,可进入三羧酸循环代谢,或经糖异生途径转变为葡萄糖 乙醛酸循环的意义: (1)乙酰CoA经乙醛酸循环可以和三羧酸循环相偶联,补充三羧酸循环中间产物的缺失。 (2)乙醛酸循环是微生物利用乙酸作为碳源的途径之一。

(3)乙醛酸循环是油料植物将脂肪转变为糖和氨基酸的途径。 5.答:(1)产生的5-磷酸核糖是生成核糖,多种核苷酸,核苷酸辅酶和核酸的原料。 (2)生成的NADPH+H+是脂肪酸合成等许多反应的供氢体。

(3)此途径产生的4-磷酸赤藓糖与3-磷酸甘油酸可以可成莽草酸,进而转变为芳香族氨基酸。

(4)途径产生的NADPH+H+可转变为NADH+H+,进一步氧化产生ATP,提供部分能量。 6.答:糖分解代谢可按EMP-TCA途径进行,也可按磷酸戊糖途径,决定因素是能荷水平,能荷低时糖分解按EMP-TCA途径进行,能荷高时可按磷酸戊糖途径

7.答:丙氨酸成糖是体内很重要的糖异生过程。首先丙氨酸经转氨作用生成丙酮酸,丙

87

酮酸进入线粒体转变成草酰乙酸。但生成的草酰乙酸不能通过线粒体膜,为此须转变成苹果酸或天冬氨酸,后二者到胞浆里再转变成草酰乙酸。草酰乙酸转变成磷酸烯醇式丙酮酸,后者沿酵解路逆行而成糖。总之丙氨酸成糖须先脱掉氨基,然后绕过“能障”及“膜障”才能成糖。

8.答:磷酸二羟丙酮可还原a-磷酸甘油,后者可而参与合成甘油三酯和甘油磷脂。 3-磷酸甘油酸是丝氨酸的前体,因而也是甘氨酸和半胱氨酸的前体。 磷酸烯醇式丙酮酸两次用于合成芳香族氨基酸的前体---分支酸。它也用于ADP磷酸化成ATP。在细菌,糖磷酸化反应(如葡萄糖生成6-磷酸葡萄糖)中的磷酸基不是来自ATP,而是来自磷酸烯醇式丙酮酸。

丙酮酸可转变成丙氨酸;它也能转变成羟乙基用以合成异亮氨酸和缬氨酸(在后者需与另一分子丙酮酸反应)。两分子丙酮酸生成a-酮异戊酸,进而可转变成亮氨酸。 RID01CYB 9.答:(1)琥珀酰CoA主要来自糖代谢,也来自长链脂肪酸的 ω-氧化。奇数碳原子脂肪酸,通过 氧化除生成乙酰CoA,后者进一步转变成琥珀酰CoA。此外,蛋氨酸,苏氨酸以及缬氨酸和异亮氨酸在降解代谢中也生成琥珀酰CoA。

(2)琥珀酰CoA的主要代谢去路是通过柠檬酸循环彻底氧化成CO2和H2O。琥珀酰CoA在肝外组织,在琥珀酸乙酰乙酰CoA转移酶催化下,可将辅酶A转移给乙酰乙酸,本身成为琥珀酸。此外,琥珀酰CoA与甘氨酸一起生成δ-氨基-γ-酮戊酸(ALA),参与血红素的合成。

四川大学生物化学脂代谢部分考试题

(一)名词解释

1. 必需脂肪酸(essential fatty acid) 2. 脂肪酸的α-氧化(α- oxidation) 3. 脂肪酸的β-氧化(β- oxidation) 4. 脂肪酸的ω-氧化(ω- oxidation) 5. 乙醛酸循环(glyoxylate cycle) 6. 柠檬酸穿梭(citriate shuttle)

7. 乙酰CoA羧化酶系(acetyl-CoA carnoxylase)

8. 脂肪酸合成酶系统(fatty acid synthase system) 9.

(二)填空题:

1. 是动物和许多植物主要的能源贮存形式,是由 与3分子 酯化而成的。

2.在线粒体外膜脂酰CoA合成酶催化下,游离脂肪酸与 和 反应,生成脂肪酸的活化形式 ,再经线粒体内膜 进入线粒体衬质。

3.一个碳原子数为n(n为偶数)的脂肪酸在β-氧化中需经 次β-氧化循环,生成 个乙酰CoA, 个FADH2和 个 NADH+H+。

4.乙醛酸循环中两个关键酶是 和 ,使异柠檬酸避免了在 循环中的两次 反应,实现从乙酰CoA净合成 循环的中间物。

5.脂肪酸从头合成的C2供体是 ,活化的C2供体是 ,还原剂是。 6.乙酰CoA羧化酶是脂肪酸从头合成的限速酶,该酶以 为辅基,消耗 ,催化 与 生成 ,柠檬酸为其 ,长链脂酰CoA为其 ..

7.脂肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在 上,它有一个与 一样的 长臂。

88

8.脂肪酸合成酶复合物一般只合成 ,动物中脂肪酸碳链延长由 或 酶系统催化;植物的脂肪酸碳链延长酶系定位于 。 9.真核细胞中,不饱和脂肪酸都是通过 途径合成的;许多细菌的单烯脂肪酸则是经由 途径合成的。

10.三酰甘油是由 和 在磷酸甘油转酰酶的作用下先形成 ,再由磷酸酶转变成 ,最后在 催化下生成三酰甘油。

11.磷脂合成中活化的二酰甘油供体为 ,在功能上类似于糖原合成中的 或淀粉合成中的 。

(三)选择题

1、下列哪项叙述符合脂肪酸的β氧化:

A.仅在线粒体中进行 B.产生的NADPH用于合成脂肪酸

C.被胞浆酶催化 D.产生的NADPH用于葡萄糖转变成丙酮酸 E.需要酰基载体蛋白参与 2、脂肪酸在细胞中氧化降解

A.从酰基CoA开始 B.产生的能量不能为细胞所利用 C.被肉毒碱抑制 D.主要在细胞核中进行 E.在降解过程中反复脱下三碳单位使脂肪酸链变短 3.下列哪些辅因子参与脂肪酸的β氧化:

A ACP B FMN C 生物素 D NAD+ 4.下列关于乙醛酸循环的论述哪些是正确的(多选)? A 它对于以乙酸为唯一碳源的微生物是必要的; B 它还存在于油料种子萌发时形成的乙醛酸循环体;

C 乙醛酸循环主要的生理功能就是从乙酰CoA合成三羧酸循环的中间产物; D 动物体内不存在乙醛酸循环,因此不能利用乙酰CoA为糖异生提供原料。 5.脂肪酸从头合成的酰基载体是:

A.ACP B.CoA C.生物素 D.TPP 6.下列关于脂肪酸碳链延长系统的叙述哪些是正确的(多选)? A.动物的内质网酶系统催化的脂肪酸链延长,除以CoA为酰基载体外,与从头合成相同; B.动物的线粒体酶系统可以通过β氧化的逆反应把软脂酸延长为硬脂酸;

C.植物的Ⅱ型脂肪酸碳链延长系统分布于叶绿体间质和胞液中,催化软脂酸ACP延长为硬脂酸ACP,以丙二酸单酰ACP为C2供体,NADPH为还原剂;

D.植物的Ⅲ型延长系统结合于内质网,可把C18和C18以上的脂肪酸进一步延长。 7.下列哪些是人类膳食的必需脂肪酸(多选)?

A.油酸 B.亚油酸 C.亚麻酸 D.花生四烯酸 8.下述关于从乙酰CoA合成软脂酸的说法,哪些是正确的(多选)? A.所有的氧化还原反应都以NADPH做辅助因子;

B.在合成途径中涉及许多物质,其中辅酶A是唯一含有泛酰巯基乙胺的物质; C.丙二酰单酰CoA是一种“被活化的“中间物; D.反应在线粒体内进行。

9.下列哪些是关于脂类的真实叙述(多选)?

A.它们是细胞内能源物质; B.它们很难溶于水 C.是细胞膜的结构成分; D.它们仅由碳、氢、氧三种元素组成。 10.脂肪酸从头合成的限速酶是:

A.乙酰CoA羧化酶 B.缩合酶

C.β-酮脂酰-ACP还原酶 D.α,β-烯脂酰-ACP还原酶

89

11.下列关于不饱和脂肪酸生物合成的叙述哪些是正确的(多选)? A.细菌一般通过厌氧途径合成单烯脂肪酸;

B.真核生物都通过氧化脱氢途径合成单烯脂肪酸,该途径由去饱和酶催化,以NADPH为电子供体,O2的参与;

C.植物体内还存在Δ12-、Δ15 -去饱和酶,可催化油酰基进一步去饱和,生成亚油酸和亚麻酸。

D.植物体内有Δ6-去饱和酶、转移地催化油酰基Δ9 与羧基间进一步去饱和。

12.以干重计量,脂肪比糖完全氧化产生更多的能量。下面那种比例最接近糖对脂肪的产能比例:

A.1:2 B.1:3 C.1:4 D.2:3 E.3:4

13.软脂酰CoA在β-氧化第一次循环中以及生成的二碳代谢物彻底氧化时,ATP的总量是:

A.3ATP B.13ATP C.14 ATP D.17ATP E.18ATP 14.下述酶中哪个是多酶复合体?

A.ACP-转酰基酶 B.丙二酰单酰CoA- ACP-转酰基酶 C.β-酮脂酰-ACP还原酶 D.β-羟脂酰-ACP脱水酶 E.脂肪酸合成酶 15.由3-磷酸甘油和酰基CoA合成甘油三酯过程中,生成的第一个中间产物是下列那种? A.2-甘油单酯 B.1,2-甘油二酯 C.溶血磷脂酸 D.磷脂酸 E.酰基肉毒碱

16.下述哪种说法最准确地描述了肉毒碱的功能?

A.转运中链脂肪酸进入肠上皮细胞 B.转运中链脂肪酸越过线粒体内膜 C.参与转移酶催化的酰基反应 D.是脂肪酸合成代谢中需要的一种辅酶 (四)是非判断题

()1. 脂肪酸的β-氧化和α-氧化都是从羧基端开始的。

()2. 只有偶数碳原子的脂肪才能经β-氧化降解成乙酰CoA.。

( )3.脂肪酸从头合成中,将糖代谢生成的乙酰CoA从线粒体内转移到胞液中的化合物是苹果酸。

()4.脂肪酸的从头合成需要柠檬酸裂解提供乙酰CoA.。 ()5.脂肪酸β-氧化酶系存在于胞浆中。 ()6.肉毒碱可抑制脂肪酸的氧化分解。

( )7.萌发的油料种子和某些微生物拥有乙醛酸循环途径,可利用脂肪酸α-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。

( )8.在真核细胞内,饱和脂肪酸在O2的参与下和专一的去饱和酶系统催化下进一步生成各种长链脂肪酸。

( )9.脂肪酸的生物合成包括二个方面:饱和脂肪酸的从头合成及不饱和脂肪酸的合成。

()10.甘油在甘油激酶的催化下,生成α-磷酸甘油,反应消耗ATP,为可逆反应。 (五)完成反应式

1. 脂肪酸 + ATP +( )→ ( )+( )+( ) 催化此反应的酶是:脂酰CoA合成酶

2.甘油二酯 + R3CO-S-CoA → ( )+ HSCoA 催化此反应的酶是:( )

3.乙酰CoA + CO2 + ATP → ( )+ ADP + Pi

90

催化此反应的酶是:( )

4.3-磷酸甘油 + ( )→ ( )+ NADH + H+ 催化此反应的酶是:磷酸甘油脱氢酶 (六)问答题及计算题

1. 按下述几方面,比较脂肪酸氧化和合成的差异: (1)进行部位; (2)酰基载体; (3)所需辅酶

(4)β-羟基中间物的构型 (5)促进过程的能量状态 (6)合成或降解的方向 (7)酶系统

2. 在脂肪生物合成过程中,软脂酸和硬脂酸是怎样合成的? 3. 什么是乙醛酸循环,有何生物学意义?

4. 在脂肪酸合成中,乙酰CoA.羧化酶起什么作用?

5.说明动物、植物、细菌在合成不饱和脂肪酸方面的差异。

6.1mol软脂酸完全氧化成CO2和H2O可生成多少mol ATP?若1g软脂酸完全氧化时的ΔG0ˊ=9kcal,软脂酸的分子量位56.4,试求能量转化为ATP的效率。

7.1mol甘油完全氧化成CO2和H2O时净生成可生成多少mol ATP?假设在外生成NADH都通过磷酸甘油穿梭进入线粒体。 参考答案: (一、)名词解释:

1.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。

2.α-氧化:α-氧化作用是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接参与,经脂肪酸过氧化物酶催化作用,由α碳原子开始氧化,氧化产物是D-α-羟脂肪酸或少一个碳原子的脂肪酸。

3. 脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA和比原来少2个碳原子的脂肪酸。

4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末端碳原子被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程。 5. 乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和中间物的一个来源。某些植物和微生物体内有此循环,他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成。

6. 柠檬酸穿梭:就是线粒体内的乙酰CoA与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需消耗ATP将柠檬酸裂解回草酰乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸,这样就可又一次参与转运乙酰CoA的循环。

7.乙酰CoA羧化酶系:大肠杆菌乙酰CoA羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三种组份,它们共同作用催化乙酰CoA的羧化反应,生成丙二酸单酰-CoA。

8.脂肪酸合酶系统:脂肪酸合酶系统包括酰基载体蛋白(ACP)和6种酶,它们分别是:

91

乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP合成酶;β-酮脂酰ACP还原酶;β-羟;脂酰ACP脱水酶;烯脂酰ACP还原酶。 (二)填空题

1.脂肪;甘油;脂肪酸

2.ATP-Mg2+ ;CoA-SH;脂酰S-CoA;肉毒碱-脂酰转移酶系统 3.0.5n-1;0.5n;0.5n-1;0.5n-1

4.异柠檬酸裂解酶;苹果酸合成酶;三羧酸;脱羧;三羧酸 5.乙酰CoA;丙二酸单酰CoA;NADPH+H+

6.生物素;ATP;乙酰CoA;HCO3- ;丙二酸单酰CoA;激活剂;抑制剂 7.ACP;CoA;4’-磷酸泛酰巯基乙胺 8.软脂酸;线粒体;内质网;细胞溶质 9.氧化脱氢;厌氧;

10.3-磷酸甘油;脂酰-CoA;磷脂酸;二酰甘油;二酰甘油转移酶 11.CDP-二酰甘油;UDP-G;ADP-G (三)选择题

1.A: 脂肪酸β-氧化酶系分布于线粒体基质内。酰基载体蛋白是脂肪酸合成酶系的蛋白辅酶。脂肪酸β-氧化生成NADH,而葡萄糖转变成丙酮酸需要NAD+。

2.A:脂肪酸氧化在线粒体进行,连续脱下二碳单位使烃链变短。产生的ATP供细胞利用。肉毒碱能促进而不是抑制脂肪酸氧化降解。脂肪酸形成酰基CoA后才能氧化降解。 3.D:参与脂肪酸β-氧化的辅因子有CoASH, FAD ,NAD+, FAD。 4.ABCD:

5.A:脂肪酸从头合成的整个反应过程需要一种脂酰基载体蛋白即ACP的参与。 6.ABCD:

7.BCD:必需脂肪酸一般都是不饱和脂肪酸,它们是亚油酸、亚麻酸、花生四烯酸。 8.AC:在脂肪酸合成中以NADPH为供氢体,在脂肪酸氧化时以FAD和NAD+两者做辅助因子。在脂肪酸合成中,酰基载体蛋白和辅酶A都含有泛酰基乙胺,乙酰CoA羧化成丙二酸单酰CoA,从而活化了其中乙酰基部分,以便加在延长中的脂肪酸碳键上。脂肪酸合成是在线粒体外,而氧化分解则在线粒体内进行。

9.ABC:脂类是难溶于水、易溶于有机溶剂的一类物质。脂类除含有碳、氢、氧外还含有氮及磷。脂类的主要储存形式是甘油三酯,后者完全不能在水中溶解。脂类主要的结构形式是磷脂,磷脂能部分溶解于水。

10.A:乙酰CoA羧化酶催化的反应为不可逆反应。 11.ABC:

12.A:甘油三酯完全氧化,每克产能为9.3千卡;糖或蛋白质为4.1千卡/克。则脂类产能约为糖或蛋白质的二倍。

13.D:软脂酰CoA在β-氧化第一次循环中产生乙酰CoA、FADH2、NADH+H+以及十四碳的活化脂肪酸个一分子。十四碳脂肪酸不能直接进入柠檬酸循环彻底氧化。FADH2和NADH+H+进入呼吸链分别生成2ATP和3ATP。乙酰CoA进入柠檬酸循环彻底氧化生成12ATP。所以共生成17ATP。 14.E:

15.D:3-磷酸甘油和两分子酰基辅酶A反应生成磷脂酸。磷脂酸在磷脂酸磷酸酶的催化下水解生成磷酸和甘油二酯,后者与另一分子酰基辅酶A反应生成甘油三酯。

16.C:肉毒碱转运胞浆中活化的长链脂肪酸越过线粒体内膜。位于线粒体内膜外侧的肉毒碱脂酰转移酶Ⅰ催化脂酰基由辅酶A转给肉毒碱,位于线粒体内膜内侧的肉毒碱脂酰

92

转移酶Ⅱ催化脂酰基还给辅酶A。中链脂肪酸不需借助肉毒碱就能通过线粒体内膜或细胞质膜。

(四)是非题 1. 对: 2. 错:

3. 错:脂肪酸从头合成中,将糖代谢生成的乙酰CoA从线粒体内转移到胞液中的化合物 是柠檬酸 4. 对:

5. 错:脂肪酸β-氧化酶系存在于线粒体。 6. 错:肉毒碱可促进脂肪酸的氧化分解。

7. 错:萌发的油料种子和某些微生物拥有乙醛酸循环途径,可利用脂肪酸β-氧化生成 的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。

8. 错:在真核细胞内,饱和脂肪酸在O2的参与下和专一的去饱和酶系统催化下进一步生成各种不饱和脂肪酸。

9. 错:脂肪酸的生物合成包括三个方面:饱和脂肪酸的从头合成、脂肪酸碳链的延长及不饱和脂肪酸的合成。

10.错:甘油在甘油激酶的催化下,生成α-磷酸甘油,反应消耗ATP,为不可逆反应 (五)完成反应式

1. 脂肪酸 + ATP +(CoA)→ (脂酰-S-CoA)+(AMP)+(PPi) 催化此反应的酶是:脂酰CoA合成酶

2.甘油二酯 + R3CO-S-CoA → (甘油三酯)+ HSCoA 催化此反应的酶是:(甘油三酯转酰基酶)

3.乙酰CoA + CO2 + ATP → (丙二酰单酰CoA )+ ADP + Pi 催化此反应的酶是:(丙二酰单酰CoA 羧化酶)

4.3-磷酸甘油 + (NAD+)→ (磷酸二羟丙酮)+ NADH + H+ 催化此反应的酶是:磷酸甘油脱氢酶 (六)问答题及计算题(解题要点)

1. 答:氧化在线粒体,合成在胞液;氧化的酰基载体是辅酶A,合成的酰基载体是酰基载体蛋白;氧化是FAD和NAD+,合成是NADPH;氧化是L型,合成是D型。氧化不需要CO2,合成需要CO2;氧化为高ADP水平,合成为高ATP水平。氧化是羧基端向甲基端,合成是甲基端向羧基端;脂肪酸合成酶系为多酶复合体,而不是氧化酶。 2. 答:(1)软脂酸合成:软脂酸是十六碳饱和脂肪酸,在细胞液中合成,合成软脂酸需要两个酶系统参加。一个是乙酰CoA羧化酶,他包括三种成分,生物素羧化酶、生物素羧基载体蛋白、转羧基酶。由它们共同作用,催化乙酰CoA转变为丙二酸单酰CoA。另一个是脂肪酸合成酶,该酶是一个多酶复合体,包括6种酶和一个酰基载体蛋白,在它们的共同作用下,催化乙酰CoA和丙二酸单酰CoA,合成软脂酸其反应包括4步,即缩合、还原、脱水、再缩合,每经过4步循环,可延长2个碳。如此进行,经过7次循环即可合成软脂酰—ACP。软脂酰—ACP在硫激酶作用下分解,形成游离的软脂酸。软脂酸的合成是从原始材料乙酰CoA开始的所以称之为从头合成途径。

(2)硬脂酸的合成,在动物和植物中有所不同。在动物中,合成地点有两处,

即线粒体和粗糙内质网。在线粒体中,合成硬脂酸的碳原子受体是软脂酰CoA,碳原子的给体是乙酰CoA。在内质网中,碳原子的受体也是软脂酰CoA,但碳原子的给体是丙二酸单酰CoA。在植物中,合成地点是细胞溶质。碳原子的受体不同于动物,是软脂酰ACP;碳原子的给体也不同与动物,是丙二酸单酰ACP。在两种生物中,合成硬脂酸的还原剂都

93

是一样的。

1.答:乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组织中尚未发现。乙醛酸循环反应分为五步(略)。总反应说明,循环每转1圈需要消耗2分子乙酰CoA,同时产生1分子琥珀酸。琥珀酸产生后,可进入三羧酸循环代谢,或者变为葡萄糖。 乙醛酸循环的意义有如下几点:(1)乙酰CoA经乙醛酸循环可琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。

2.答:在饱和脂肪酸的生物合成中,脂肪酸碳链的延长需要丙二酸单酰CoA。乙酰CoA羧化酶的作用就是催化乙酰CoA和HCO3-合成丙二酸单酰CoA,为脂肪酸合成提供三碳化合物。乙酰CoA羧化酶催化反应(略)。乙酰CoA羧化酶是脂肪酸合成反应中的一种限速调节酶,它受柠檬酸的激活,但受棕榈酸的反馈抑制。

3.答:在植物中,不仅可以合成单不饱和脂肪酸,而且可以合成多不饱和脂肪酸,例如亚油酸、亚麻酸和桐油酸等。植物体中单不饱和脂肪酸的合成,主要是通过氧化脱氢途径进行。这个氧化脱氢反应需要氧分子和NADPH+H+参加,另外还需要黄素蛋白和铁氧还蛋白参加,由去饱和酶催化。植物体中多不饱和脂肪酸的合成,主要是在单不饱和脂肪酸基础上进一步氧化脱氢,可生成二烯酸和三烯酸,由专一的去饱和酶催化并需氧分子和NADPH+H+参加。

在哺乳动物中,仅能合成单不饱和脂肪酸,如油酸,不能合成多不饱和脂肪酸,动物体内存在的多不饱和脂肪酸,如亚油酸等,完全来自植物油脂,由食物中摄取。动物体内单不饱和脂肪酸的合成,是通过氧化脱氢途径进行的。由去饱和酶催化,该酶存在于内质网膜上,反应需要氧分子和NADPH+H+参与,此外还需要细胞色素b5和细胞色素b5还原酶存在,作为电子的传递体。整个过程传递4个电子,所形成的产物含顺式—9—烯键。 细菌中,不饱和脂肪酸的合成不同于动、植物,动植物是通过有氧途径,而细菌是通过厌氧途径,细菌先通过脂肪酸合成酶系,合成十碳的β-羟癸酰-SACP;然后在脱水酶作用下,形成顺—β,γ癸烯酰SACP;再在此化合物基础上,形成不同长度的单烯酰酸. (七)计算题

1.答:软脂酸经β-氧化,则生成8个乙酰CoA,7个FADH2和7个NADH+H+。 乙酰CoA在三羧酸循环中氧化分解,一个乙酰CoA生成12个ATP, 所以 12×8=96ATP,7个FADH2经呼吸链氧化可生成2×7=14 ATP,

7NADH+H+经呼吸链氧化可生成3×7=21 ATP,三者相加,减去消耗掉1个ATP,实得96+14+21-1=130mol/LATP。

每有1mol/L软脂酸氧化,即可生成130mol/LATP。

软脂酸的分子量为256.4,所以软脂酸氧化时的ΔG0ˊ=256.4×9000=2.31×106cal/mol,130molATP贮存能量7.3×130=949Kcal 贮存效率=949×100/2.31×103=41.08% 2. 答:甘油磷酸化消耗 -1ATP

磷酸甘油醛脱氢,FADH2,生成 2 ATP 磷酸二羟丙酮酵解生成 2 ATP

磷酸甘油醛脱氢NAD、NADH(H+)穿梭生成 2或3 ATP 丙酮酸完全氧化 15 ATP 20或21 mol/LATP

四川大学生物化学含氮化合物部分考试题

94

(一)名词解释

1.蛋白酶(Proteinase) 2.肽酶(Peptidase)

3.氮平衡(Nitrogen balance)

4.生物固氮(Biological nitrogen fixation) 5.硝酸还原作用(Nitrate reduction)

6.氨的同化(Incorporation of ammonium ions into organic molecules) 7.转氨作用(Transamination) 8.尿素循环(Urea cycle)

9.生糖氨基酸(Glucogenic amino acid) 10.生酮氨基酸(Ketogenic amino acid) 11.核酸酶(Nuclease)

12.限制性核酸内切酶(Restriction endonuclease) 13.氨基蝶呤(Aminopterin)

14.一碳单位(One carbon unit) (二)英文缩写符号

1.GOT 2.GPT 3.APS 4.PAL 5.PRPP 6.SAM 7.GDH 8.IMP (三)填空

1.生物体内的蛋白质可被 和 共同作用降解成氨基酸。

2.多肽链经胰蛋白酶降解后,产生新肽段羧基端主要是 和 氨基酸残基。 3.胰凝乳蛋白酶专一性水解多肽链由 族氨基酸 端形成的肽键。 4.氨基酸的降解反应包括 、 和 作用。 5.转氨酶和脱羧酶的辅酶通常是 。

6.谷氨酸经脱氨后产生 和氨,前者进入 进一步代谢。 7.尿素循环中产生的 和 两种氨基酸不是蛋白质氨基酸。 8.尿素分子中两个N原子,分别来自 和 。 9.生物固氮作用是将空气中的 转化为 的过程。

10.固氮酶由 和 两种蛋白质组成,固氮酶要求的反应条件是 、 和 。 11.硝酸还原酶和亚硝酸还原酶通常以 或 为还原剂。

12.芳香族氨基酸碳架主要来自糖酵解中间代谢物 和磷酸戊糖途径的中间代谢物 。13.组氨酸合成的碳架来自糖代谢的中间物 。 14.氨基酸脱下氨的主要去路有 、 和 。

15.胞嘧啶和尿嘧啶经脱氨、还原和水解产生的终产物为 。 16.参与嘌呤核苷酸合成的氨基酸有 、 和 。 17.尿苷酸转变为胞苷酸是在 水平上进行的。

18.脱氧核糖核苷酸的合成是由 酶催化的,被还原的底物是 。

19.在嘌呤核苷酸的合成中,腺苷酸的C-6氨基来自 ;鸟苷酸的C-2氨基来自 。 20.对某些碱基顺序有专一性的核酸内切酶称为 。 21.多巴是 经 作用生成的。

22.生物体中活性蛋氨酸是 ,它是活泼 的供应者。 (四)选择题

1.转氨酶的辅酶是:

95

A.NAD+ B.NADP+ C.FAD D.磷酸吡哆醛

2.下列哪种酶对有多肽链中赖氨酸和精氨酸的羧基参与形成的肽键有专一性: A.羧肽酶 B.胰蛋白酶

C.胃蛋白酶 D.胰凝乳蛋白酶 3.参与尿素循环的氨基酸是:

A.组氨酸 B.鸟氨酸 C.蛋氨酸 D.赖氨酸 4.γ-氨基丁酸由哪种氨基酸脱羧而来: A.Gln B.His C.Glu D.Phe

5.经脱羧后能生成吲哚乙酸的氨基酸是: A.Glu B. His C. Tyr D. Trp

6.L-谷氨酸脱氢酶的辅酶含有哪种维生素: A.VB1 B. VB2 C. VB3 D. VB5 7.磷脂合成中甲基的直接供体是:

A.半胱氨酸 B.S-腺苷蛋氨酸 C.蛋氨酸 D.胆碱 8.在尿素循环中,尿素由下列哪种物质产生: A.鸟氨酸 B.精氨酸 C.瓜氨酸 D.半胱氨酸 9.需要硫酸还原作用合成的氨基酸是: A.Cys B.Leu C.Pro D.Val

10.下列哪种氨基酸是其前体参入多肽后生成的: A.脯氨酸 B.羟脯氨酸 C.天冬氨酸 D.异亮氨酸 11.组氨酸经过下列哪种作用生成组胺的: A.还原作用 B.羟化作用 C.转氨基作用 D.脱羧基作用

12.氨基酸脱下的氨基通常以哪种化合物的形式暂存和运输: A.尿素 B.氨甲酰磷酸 C.谷氨酰胺 D.天冬酰胺 13.丙氨酸族氨基酸不包括下列哪种氨基酸: A.Ala B.Cys C.Val D.Leu

14.组氨酸的合成不需要下列哪种物质: A.PRPP B.Glu C.Gln D.Asp

15.合成嘌呤和嘧啶都需要的一种氨基酸是: A.Asp B.Gln C.Gly D.Asn

16.生物体嘌呤核苷酸合成途径中首先合成的核苷酸是: A.AMP B.GMP C.IMP D.XMP

17.人类和灵长类嘌呤代谢的终产物是: A.尿酸 B.尿囊素 C.尿囊酸 D.尿素

18.从核糖核苷酸生成脱氧核糖核苷酸的反应发生在: A.一磷酸水平 B.二磷酸水平 C.三磷酸水平 D.以上都不是

19.在嘧啶核苷酸的生物合成中不需要下列哪种物质: A.氨甲酰磷酸 B.天冬氨酸 C.谷氨酰氨 D.核糖焦磷酸

20.用胰核糖核酸酶降解RNA,可产生下列哪种物质: A.3†-嘧啶核苷酸 B.5†-嘧啶核苷酸 C.3†-嘌呤核苷酸 D.5†-嘌呤核苷酸

96

(五)是非判断题

( )1.蛋白质的营养价值主要决定于氨基酸酸的组成和比例。 ( )2.谷氨酸在转氨作用和使游离氨再利用方面都是重要分子。 ( )3.氨甲酰磷酸可以合成尿素和嘌呤。

( )4.半胱氨酸和甲硫氨酸都是体内硫酸根的主要供体。

( )5.生物固氮作用需要厌氧环境,是因为钼铁蛋白对氧十分敏感。 ( )6.磷酸吡哆醛只作为转氨酶的辅酶。

( )7.在动物体内,酪氨酸可以经羟化作用产生去甲肾上腺素和肾上腺素。 ( )8.固氮酶不仅能使氮还原为氨,也能使质子还原放出氢气。 ( )9.芳香族氨基酸都是通过莽草酸途径合成的。 ( )10.丝氨酸能用乙醛酸为原料来合成。

( )11.限制性内切酶的催化活性比非限制性内切酶的催化活性低。 ( )12.尿嘧啶的分解产物β-丙氨酸能转化成脂肪酸。

( )13.嘌呤核苷酸的合成顺序是,首先合成次黄嘌呤核苷酸,再进一步转化为腺嘌呤核苷酸和鸟嘌呤核苷酸。

( )14.嘧啶核苷酸的合成伴随着脱氢和脱羧反应。

( )15.脱氧核糖核苷酸的合成是在核糖核苷三磷酸水平上完成的。 (六)反应方程式

1. 谷氨酸 + NAD(P)+ + H2O 一→( ) + NAD(P)H +NH3 催化此反应的酶是:( )

2.谷氨酸 + NH3 + ATP 一→ ( ) + ( ) + Pi + H2O 催化此反应的酶是:( )

3.谷氨酸 + ( ) 一→( ) + 丙氨酸 催化此反应的酶是:谷丙转氨酶

4. 5†磷酸核糖 + ATP 一→ ( )+( ) 催化此反应的酶是:PRPP合成酶: 5. NMP + ATP → ( ) + ADP 催化此反应的酶是:( )

1.dUMP + N5,10亚甲四氢叶酸 → ( ) + ( ) 催化此反应的酶是:胸腺嘧啶核苷酸合酶: (七)问答题

1.举例说明氨基酸的降解通常包括哪些方式?

2.用反应式说明α-酮戊二酸是如何转变成谷氨酸的,有哪些酶和辅因子参与? 3.什么是尿素循环,有何生物学意义? 4.什么是必需氨基酸和非必需氨基酸?

5.为什么说转氨基反应在氨基酸合成和降解过程中都起重要作用? 6.核酸酶包括哪几种主要类型?

7.嘌呤核苷酸分子中各原子的来源及合成特点怎样? 8.嘧啶核苷酸分子中各原子的来源及合成特点怎样? 参考答案:

(一)名词解释

1.蛋白酶:以称肽链内切酶(Endopeptidase),作用于多肽链内部的肽键,生成较原来含氨基酸数少的肽段,不同来源的蛋白酶水解专一性不同。

2.肽酶:只作用于多肽链的末端,根据专一性不同,可在多肽的N-端或C-端水解下氨

97

基酸,如氨肽酶、羧肽酶、二肽酶等。 3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况。 4.生物固氮:利用微生物中固氮酶的作用,在常温常压条件下将大气中的氮还原为氨的过程(N2 + 3H2→ 2 NH3)。

5.硝酸还原作用:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮转变成氨态氮的过程,植物体内硝酸还原作用主要在叶和根进行。

6.氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程。

7.转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸。

8.尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨转变成尿素的过程,有解除氨毒害的作用。

9.生糖氨基酸:在分解过程中能转变成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称为生糖氨基酸。

10.生酮氨基酸:在分解过程中能转变成乙酰辅酶A和乙酰乙酰辅酶A的氨基酸称为生酮氨基酸。

11.核酸酶:作用于核酸分子中的磷酸二酯键的酶,分解产物为寡核苷酸或核苷酸,根据作用位置不同可分为核酸外切酶和核酸内切酶。

12.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要工具酶。

13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸结构相似,又称氨基叶酸。

14.一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主要是四氢叶酸,功能是参与生物分子的修饰。 (二)英文缩写符号

1.GOT(Glutamate-oxaloacetate transaminase):谷草转氨酶, 2.GPT(Glutamate-pyruvate transaminase):谷丙转氨酶 3.APS(Adenosine phosphosulfate):腺苷酰硫酸 4.PAL(Pheny-lalanine ammonia lyase):苯丙氨酸解氨酶 5.PRPP(Phosphoribosyl pyrophosate):5-磷酸核糖焦磷酸 6.SAM (S-adenoymethionine):S-腺苷蛋氨酸 7.GDH (Glutamate drhyddrogenase):谷氨酸脱氢酶 8.IMP(Inosinic acid):次黄嘌呤核苷酸 (三)填空

1.蛋白酶;肽酶 2.赖氨酸;精氨酸 3.芳香;羧基

4.脱氨;脱羧;羟化 5.磷酸吡哆醛

6.α-酮戊二酸;三羧酸循环; 7.鸟氨酸;瓜氨酸

8.氨甲酰磷酸;天冬氨酸 9.N2;HN3

98

10.钼铁蛋白;铁蛋白;还原剂;ATP;厌氧环境 11.NAD(P);铁氧还蛋白

12.磷酸烯醇式丙酮酸;4-磷酸赤藓糖 13.核糖

14.生成尿素;合成谷氨酰胺;再合成氨基酸 15.β-丙氨酸

16.甘氨酸;天冬氨酸;谷氨酰胺 17.尿苷三磷酸

18.核糖核苷二磷酸还原酶;核苷二磷酸 19.天冬氨酸;谷氨酰胺 20.限制性核酸内切酶 21.酪氨酸;羟化

22.S-腺苷蛋氨酸;甲基 (四)选择题 1.(D)A、B和C通常作为脱氢酶的辅酶,磷酸吡哆醛可作为转氨酶、脱羧酶和消旋酶的辅酶。 2.(B)胰蛋白酶属于肽链内切酶,专一水解带正电荷的碱性氨基酸羧基参与形成的肽键;羧肽酶是外肽酶,在蛋白质的羧基端逐个水解氨基酸;胰凝乳蛋白酶能专一水解芳香族氨基酸羧基参与形成的肽键;胃蛋白质酶水解专一性不强。 3.(B)氨基酸降解后产生的氨累积过多会产生毒性。游离的氨先经同化作用生成氨甲酰磷酸,再与鸟氨酸反应进入尿素循环(也称鸟氨酸循环),产生尿素排出体外。 4.(C) 5.(D) 6.(D)谷氨酸脱氢酶催化的反应要求NAD+和NADP+,NAD+和NADP+是含有维生素B5(烟酰胺)的辅酶。焦磷酸硫胺素是维生素B1的衍生物,常作为α-酮酸脱羧酶和转酮酶的辅酶。FMN和FAD是维生素B2的衍生物,是多种氧化还原酶的辅酶。辅酶A是含有维生素B3的辅酶,是许多酰基转移酶的辅酶。 7.(B)S-腺苷蛋氨酸是生物体内甲基的直接供体。 8.(B)尿素循环中产生的精氨酸在精氨酸酶的作用下水解生成尿素和鸟氨酸。 9.(A)半胱氨酸的合成需要硫酸还原作用提供硫原子。半胱氨酸降解也是生物体内生成硫酸根的主要来源。 10.(B)羟脯氨酸不直接参与多肽合成,而是多肽形成后在脯氨酸上经脯氨酸羟化酶催化形成的。是胶原蛋白中存在的一种稀有氨基酸。 11.(D)组氨是组氨酸经脱羧基作用生成的。催化此反应的酶是组氨酸脱羧酶,此酶与其它氨基酸脱羧酶不同,它的辅酶不是磷酸吡哆醛。 12.(C)谷氨酰胺可以利用谷氨酸和游离氨为原料,经谷氨酰胺合酶催化生成,反应消耗一分子ATP。 13.(B) 14.(D) 15.(A) 16.(C)在嘌呤核苷酸生物合成中首先合成次黄嘌呤核苷酸(IMP),次黄嘌呤核苷酸氨基化生成嘌呤核苷酸,次黄嘌呤核苷酸先氧化成黄嘌呤核苷酸(XMP),再氨基化生成鸟嘌呤核苷酸。 17.(A)人类、灵长类、鸟类及大多数昆虫嘌呤代谢的最终产物是尿酸,其它哺乳动物

99

是尿囊素,某些硬骨鱼可将尿囊素继续分解为尿囊酸,大多数鱼类生成尿素。 18.(B)脱氧核糖核苷酸的合成,是以核糖核苷二磷酸为底物,在核糖核苷二磷酸还原酶催化下生成的。 19.(C) 20.(A)胰核糖核酸酶是具有高度专一性的核酸内切酶,基作用位点为嘧啶核苷-3†磷酸基与下一个核苷酸的-5†羟基形成的酯键。因此,产物是3†嘧啶核苷酸或以3†嘧啶核苷酸结尾的寡核苷酸。 (五)是非判断题 1.对:摄入蛋白质的营养价值,在很大程度上决定于蛋白质中必需氨基酸的组成和比例,必需氨基酸的组成齐全,且比例合理的蛋白质营养价值高。

2.对:在转氨基作用中谷氨酸是最主要的氨基供体,用于合成其它氨基酸;谷氨酸也可在谷氨酰氨合成酶的催化下结合游离氨形成谷氨酰氨,谷氨酰氨再与α-酮戊二酸反应生成二分子谷氨酸,使游离氨得到再利用。

3.错:氨甲酰磷酸可以经尿素循环生成尿素,也参与嘧啶核苷酸的合成,但与嘌呤核苷酸的合成无关。

4.错:半胱氨酸体内硫酸根的主要供体,甲硫氨酸是体内甲基的主要供体。

5.错:固氮酶包括钼铁蛋白和铁蛋白二种蛋白质组分,其中铁蛋白对氧十分敏感,要求严格厌氧环境,以便有较低的氧化还原电位还原钼铁蛋白。

6.错:磷酸吡哆醛徐作为转氨酶的辅酶外,还可作为脱羧酶和消旋酶的辅酶。 7.对:酪氨酸在酪氨酸酶催化下发生羟化生成多巴(3,4-二羟苯丙氨酸),多巴脱羧生成多巴胺(3,4-二羟苯乙胺),多巴和多巴胺可进一步生成去甲肾上腺素和肾上腺素。 8.对:固氮酶能还原质子(H+)而放出氢(H2),氢在氢酶的作用下将电子传给铁氧还蛋白,使氢作为还原氮的电子供体。

9.对:磷酸烯醇式丙酮酸和磷酸赤藓糖首先形成莽草酸,进而形成色氨酸、苯丙氨酸和酪氨酸,反应过程称为莽草酸途径。

10.对:在光合生物中,由光呼吸产生的乙醛酸经转氨作用可生成甘氨酸,二分子甘氨酸脱羧脱氨形成一分子丝氨酸。

11.错:限制性内切酶比非限制性内切酶专一性高,与酶活力高低无关。

12.对:尿嘧啶分解产生的β-丙氨酸脱氨后生成甲酰乙酸,再脱羧生成乙酸,进而转化成乙酰辅酶A,参与脂肪酸合成。

13.对:生物体可以利用二氧化碳、甲酸盐、甘氨酸、天冬氨酸、谷氨酰胺和磷酸核糖合成嘌呤核苷酸,首先合成次黄嘌呤核苷酸,再经转氨基作用形成腺嘌呤核苷酸和鸟嘌呤核苷酸。

14.对:在嘧啶合成过程中,氨甲酰磷酸和天冬氨酸合成的氨甲酰天冬氨酸首先脱氢生成乳清酸,氢受体是NAD+,乳清酸与PRPP结合形成乳清酸核苷酸,后者脱羧形成尿苷酸。 15.错:脱氧核糖核苷酸的合成是在核糖核苷二磷酸水平上由核糖核苷二磷酸还原酶催化完成的,反应需要还原剂,大肠杆菌中为硫氧还蛋白和NADPH。 (六)反应方程式

1. 谷氨酸 + NAD(P)+ + H2O →(α-酮戊二酸) + NAD(P)H +NH3 催化此反应的酶是:(谷氨酸脱氢酶)

2.谷氨酸 + NH3 + ATP → (谷氨酰胺) + (ADP) + Pi + H2O 催化此反应的酶是:(谷氨酰胺合酶)

3.谷氨酸 + (丙酮酸)→(α-酮戊二酸) + 丙氨酸 催化此反应的酶是:谷丙转氨酶

100

4. 5†磷酸核糖 + ATP → (5†磷酸核糖焦磷酸)+(AMP) 催化此反应的酶是:PRPP合成酶: 5. NMP + ATP → (NDP) + ADP 催化此反应的酶是:(核苷酸激酶)

6.dUMP + N5,10亚甲四氢叶酸 → (dTMP) + (二氢叶酸) 催化此反应的酶是:胸腺嘧啶核苷酸合酶: (七)问答题(答题要点) 1.答:(1)脱氨基作用:包括氧化脱氨和非氧化脱氨,分解产物为α-酮酸和氨。 (2)脱羧基作用:氨基酸在氨基酸脱羧酶的作用下脱羧,生成二氧化碳和胺类化合物。 (3)羟化作用:有些氨基酸(如酪氨酸)降解时首先发生羟化作用,生成羟基氨基酸,再脱羧生成二氧化碳和胺类化合物。 2.答:(1)谷氨酸脱氢酶反应:

α-酮戊二酸 + NH3- +NADH → 谷氨酸 + NAD+ + H2O (2)谷氨酸合酶-谷氨酰胺合酶反应:

谷氨酸 + NH3- +ATP →谷氨酰胺 +ADP + Pi + H2O 谷氨酰胺 +α-酮戊二酸 + 2H → 2谷氨酸 还原剂(2H):可以是NADH、NADPH和铁氧还蛋白 3.答:(1)尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨经过一系列反应转变成尿素的过程。有解除氨毒害的作用 (2)生物学意义:有解除氨毒害的作用 4.答:(1)必需氨基酸:生物体本身不能合成而为机体蛋白质合成所必需的氨基酸称为必需氨基酸,人的必需氨基酸有8种。

(2)非必需氨基酸:生物体本身能合成的蛋白质氨基酸称为非必需氨基酸,人的非必需氨基酸有12种。 5.答:(1)在氨基酸合成过程中,转氨基反应是氨基酸合成的主要方式,许多氨基酸的合成可以通过转氨酶的催化作用,接受来自谷氨酸的氨基而形成。 (2)在氨基酸的分解过程中,氨基酸也可以先经转氨基作用把氨基酸上的氨基转移到α-酮戊二酸上形成谷氨酸,谷氨酸在谷氨酸脱羟酶的作用上脱去氨基。 6.答:(1)脱氧核糖核酸酶(DNase):作用于DNA分子。 (2)核糖核酸酶(DNase):作用于RNA分子。

(3)核酸外切酶:作用于多核苷酸链末端的核酸酶,包括3†核酸外切酶和5†核酸外切酶。

(4)核酸内切酶:作用于多核苷酸链内部磷酸二酯键的核酸酶,包括碱基专一性核酸内切酶和碱基序列专一性核酸内切酶(限制性核酸内切酶) 7.答:(1)各原子的来源:N1-天冬氨酸;C2和C8-甲酸盐;N7、C4和C5-甘氨酸;C6-二氧化碳;N3和N9-谷氨酰胺;核糖-磷酸戊糖途径的5†磷酸核糖

(2)合成特点:5†磷酸核糖开始→5†磷酸核糖焦磷酸(PRPP)→5†磷酸核糖胺(N9)→甘氨酰胺核苷酸(C4、C5 、N7)→甲酰甘氨酰胺核苷酸(C8)→5†氨基咪唑核苷酸(C3)→5†氨基咪唑-4-羧酸核苷酸(C6)5†氨基咪唑甲酰胺核苷酸(N1)→次黄嘌呤核苷酸(C2)。 8.答:(1)各原子的来源:N1、C4、C5、C6-天冬氨酸;C2-二氧化碳;N3-氨;核糖-磷酸戊糖途径的5†磷酸核糖。

(2)合成特点:氨甲酰磷酸 + 天冬氨酸 → 乳清酸 乳清酸 + PRPP →乳清酸核苷-5†-磷酸 → 尿苷酸

101

四川大学生物化学核酸合成部分考试题

(一)名词解释

1.半保留复制(semiconservative replication) 2.不对称转录(asymmetric trancription) 3.逆转录(reverse transcription) 4.冈崎片段(Okazaki fragment) 5.复制叉(replication fork) 6.领头链(leading strand) 7.随后链(lagging strand) 8.有意义链(sense strand) 9.光复活(photoreactivation)

10.重组修复(recombination repair) 11.内含子(intron) 12.外显子(exon)

13.基因载体(genonic vector) 14.质粒(plasmid) (二)填空题 1.DNA复制是定点双向进行的, 股的合成是 ,并且合成方向和复制叉移动方向相同; 股的合成是 的,合成方向与复制叉移动的方向相反。每个冈崎片段是借助于连在它的 末端上的一小段 而合成的;所有冈崎片段链的增长都是按 方向进行。

2.DNA连接酶催化的连接反应需要能量,大肠杆菌由 供能,动物细胞由 供能。

3.大肠杆菌RNA聚合酶全酶由 组成;核心酶的组成是 。参与识别起始信号的是 因子。 4.基因有两条链,作为模板指导转录的那条链称 链。 5.以RNA为模板合成DNA称 ,由 酶催化。

6.DNA或UpGpCpA分别经0.3NKOHR、NaseT1和牛胰RNaseI处理所得结果: DNA: 0.3NKOH: ;RNaseT1: ;RNase I: ;

UpGpCpA:0.3NKOH: ;RNaseT1: ;RNase I : 。 7.基因突变形式分为: , , 和 四类。

8.亚硝酸是一个非常有效的诱变剂,因为它可直接作用于DNA,使碱基中 基氧化成 基,造成碱基对的 。

9.所有冈崎片段的延伸都是按 方向进行的。

10.前导链的合成是 的,其合成方向与复制叉移动方向 ;随后链的合成是 的,其合成方向与复制叉移动方向 。

11.引物酶与转录中的RNA聚合酶之间的差别在于它对 不敏感,并可以 作为底物。 12.DNA聚合酶I的催化功能有 、 、 、 和 。 13.DNA回旋酶又叫 ,它的功能是 。

14.细菌的环状DNA通常在一个 开始复制,而真核生物染色体中的线形DNA可以在 起始复制。

15.大肠杆菌DNA聚合酶Ⅲ的 活性使之具有 功能,极大地提高了DNA复制的保真度。 16.大肠杆菌中已发现 种DNA聚合酶,其中 负责DNA复制, 负责DNA损伤修复。 17.DNA切除修复需要的酶有 、 、 和 。

18.在DNA复制中, 可防止单链模板重新缔合和核酸酶的攻击。

102

19.DNA合成时,先由引物酶合成 ,再由 在其3† 端合成DNA链,然后由 切除引物并填补空隙,最后由 连接成完整的链。

20.原核细胞中各种RNA是 催化生成的,而真核细胞核基因的转录分别由 种RNA聚合酶催化,其中rRNA基因由 转录,hnRNA基因由 转录,各类小分子量RAN则是 的产物。 21.一个转录单位一般应包括 序列、 序列和 顺序。

22.真核细胞中编码蛋白质的基因多为 。编码的序列还保留在成熟mRNA中的是 ,编码的序列在前体分子转录后加工中被切除的是 。在基因中 被分隔,而在成熟的mRNA序列被拼接起来。

23.染色质中的 蛋白和 蛋白对转录均有调节作用,其中 的调节作用具有组织特异性。 (三)选择题

1.DNA按半保留方式复制。如果一个完全放射标记的双链DNA分子,放在不含有放射标记物的溶液中,进行两轮复制,所产生的四个DNA分子的放射活性将会怎样: A.半数分子没有放射性 B.所有分子均有放射性

C.半数分子的两条链均有放射性 D.一个分子的两条链均有放射性 E.四个分子均无放射性

2.参加DNA复制的酶类包括:(1)DNA聚合酶Ⅲ;(2)解链酶;(3)DNA聚合酶Ⅰ;(4)RNA聚合酶(引物酶);(5)DNA连接酶。其作用顺序是: A.(4)、(3)、(1)、(2)、(5) B.(2)、(3)、(4)、(1)、(5) C.(4)、(2)、(1)、(5)、(3) D.(4)、(2)、(1)、(3)、(5) E.(2)、(4)、(1)、(3)、(5)

3.如果15N标记的大肠杆菌转入14N培养基中生长了三代,其各种状况的DNA分子比例应是下列哪一项:

纯15N 15N-14N 纯14N -DNA 杂种DNA -DNA

A. 1/8 1/8 6/8 B. 1/8 0 7/8 C. 0 1/8 7/8 D. 0 2/8 6/8 E. 0 4/8 4/8 4.下列关于DNA复制特点的叙述哪一项错误的:

A.RNA与DNA链共价相连 B.新生DNA链沿5†→3†方向合成 C.DNA链的合成是不连续的 D.复制总是定点双向进行的

E.DNA在一条母链上沿5†→3†方向合成,而在另一条母链上则沿3†→5†方向合成 5.DNA复制时, 5†—TpApGpAp-3†序列产生的互补结构是下列哪一种: A.5†—TpCpTpAp-3† B.5†—ApTpCpTp-3†

C.5†—UpCpUpAp-3† D.5†—GpCpGpAp-3† E.3† —TpCpTpAp-5† 6.下列关于DNA聚合酶I的叙述哪一项是正确的: A.它起DNA修复酶的作用但不参加DNA复制过程 B.它催化dNTP聚合时需要模板和引物

C.在DNA复制时把冈崎片段连接成完整的随从链 D.它催化产生的冈崎片段与RNA引物链相连 E.有些细菌突变体其正常生长不需要它

7.下列关于真核细胞DNA聚合酶活性的叙述哪一项是正确的:

A.它仅有一种 B它不具有核酸酶活性 C.它的底物是二磷酸脱氧核苷 D它不需要引物 E.它按3†-5†方向合成新生链

8.从正在进行DNA复制的细胞分离出的短链核酸——冈崎片段,具有下列哪项特性:

103

A.它们是双链的 B.它们是一组短的单链DNA片段 C.它们是DNA—RNA杂化双链 D.它们被核酸酶活性切除 E.它们产生于亲代DNA链的糖-磷酸骨架的缺口处 9.切除修复可以纠正下列哪一项引起的DNA损伤:

A.碱基缺失 B.碱基插入 C.碱基甲基化 D.胸腺嘧啶二聚体形成 E.碱基烷基化 10.大肠杆菌DNA连接酶需要下列哪一种辅助因子?

A.FAD作为电子受体 B.NADP+作为磷酸供体

C.NAD+形成活性腺苷酰酶 D.NAD+作为电子受体 E.以上都不是 11.下列关于RNA和DNA聚合酶的叙述哪一项是正确的: A.RNA聚合酶用二磷酸核苷合成多核苷酸链

B.RNA聚合酶需要引物,并在延长链的5†端加接碱基 C.DNA聚合酶可在链的两端加接核苷酸 D.DNA仅能以RNA为模板合成DNA

E.所有RNA聚合酶和DNA聚合酶只能在生长中的多核苷酸链的3†端加接核苷酸

12.紫外线照射引起DNA最常见的损伤形式是生成胸腺嘧啶二聚体。在下列关于DNA分子结构这种变化的叙述中,哪项是正确的:

A.不会终止DNA复制 B.可由包括连接酶在内的有关酶系统进行修复 C.可看作是一种移码突变 D.是由胸腺嘧啶二聚体酶催化生成的 E.引起相对的核苷酸链上胸腺嘧啶间的共价联结 13.下列哪种突变最可能是致死的:

A.腺嘌呤取代胞嘧啶 B.胞嘧啶取代鸟嘌呤

C.甲基胞嘧啶取代胞嘧啶 D.缺失三个核苷酸 E.插入一个核苷酸 14.镰刀形红细胞贫血病是异常血红蛋白纯合子基因的临床表现。β-链变异是由下列哪种突变造成的:

A.交换 B.插入 C.缺失 D.染色体不分离 E.点突变 15.在培养大肠杆菌时,自发点突变的引起多半是由于:

A.氢原子的互变异构移位 B.DNA糖-磷酸骨架的断裂

C.插入一个碱基对 D.链间交联 E.脱氧核糖的变旋 16.插入或缺失碱基对会引起移码突变,下列哪种化合物最容易造成这种突变: A.口丫啶衍生物 B.5-溴尿嘧啶 C.氮杂丝氨酸 D.乙基乙磺酸 E.咪唑硫嘌呤

17.在对细菌DNA复制机制的研究中,常常用到胸腺嘧啶的类似物5-溴尿嘧啶,其目的在于:

A.引起特异性移码突变以作为顺序研究用 B.在胸腺嘧啶参入部位中止DNA合成

C.在DNA亲和载体中提供一个反应基

D.合成一种密度较高的DNA以便用离心分离法予以鉴别 E.在DNA中造成一个能被温和化学方法裂解的特异部位 18.关于DNA指导的RNA合成,下列叙述哪一项是错误的: A.只有在DNA存在时,RNA聚合酶才能催化磷酸二酯键的生成 B.转录过程中,RNA聚合酶需要引物 C.RNA链的合成是从5†→3†端

D.大多数情况下只有一股DNA链作为模板

104

E.合成的RNA链从来没有环状的

19.下列关于ζ因子的叙述哪一项是正确的: A.是RNA聚合酶的亚基,起辨认转录起始点的作用

B.是DNA聚合酶的亚基,容许按5†→3†和3†→5†双向合成 C.是50S核蛋白体亚基,催化肽链生成

D.是30S核蛋白体亚基,促进mRNA与之结合

E.在30S亚基和50S亚基之间起搭桥作用,构成70S核蛋白体 20.真核生物RNA聚合酶I催化转录的产物是:

A.mRNA B.45S-rRNA C.5S-rRNA D.tRNA E.SnRNA 21.下列关于真核细胞DNA复制的叙述哪一项是错误的:

A.是半保留式复制 B.有多个复制叉 C.有几种不同的DNA聚合酶 D.复制前组蛋白从双链DNA脱出 E.真核DNA聚合酶不表现核酸酶活性 22.下列关于原核细胞转录终止的叙述哪一项是正确的:

A.是随机进行的 B.需要全酶的ρ亚基参加 C.如果基因的末端含G—C丰富的回文结构则不需要ρ亚基参加 D.如果基因的末端含A—T丰富的片段则对转录终止最为有效 E.需要ρ因子以外的ATP酶

23.下列关于大肠杆菌DNA连接酶的叙述哪些是正确的: A.催化DNA双螺旋结构之断开的DNA链间形成磷酸二酯键 B.催化两条游离的单链DNA分子间形成磷酸二酯键 C.产物中不含AMP D.需要ATP作能源

24.下列关于真核细胞mRNA的叙述不正确的是: A.它是从细胞核的RNA前体—核不均RNA生成的

B.在其链的3†端有7-甲基鸟苷,在其5†端连有多聚腺苷酸的PolyA尾巴 C.它是从前RNA通过剪接酶切除内含子连接外显子而形成的 D.是单顺反子的 (四)是非判断题

( )1.中心法则概括了DNA在信息代谢中的主导作用。

( )2.原核细胞DNA复制是在特定部位起始的,真核细胞则在多个位点同时起始进行复制。

( )3.逆转录酶催化RNA指导的DNA合成不需要RNA引物。

( )4.原核细胞和真核细胞中许多mRNA都是多顺反子转录产物。

( )5.因为DNA两条链是反向平行的,在双向复制中一条链按5†→3†的方向合成,另一条链按3†→5†的方向合成。

( )6.限制性内切酶切割的DNA片段都具有粘性末端。

( )7.已发现一些RNA前体分子具有催化活性,可以准确地自我剪接,被称为核糖酶(ribozyme),或称核酶。

( )8.重组修复可把DNA损伤部位彻底修复。 ( )9.原核生物中mRNA一般不需要转录后加工。

( )10.RNA聚合酶对弱终止子的识别需要专一的终止因子(如 蛋白)。 ( )11.原核细胞启动子中RNA聚合酶牢固结合并打开DNA双链的部分称为Pribnow box,真核细胞启动子中相应的顺序称为Hogness box,因为富含A-T,又称TATA box。

( )12.增强子(endancer)是真核细胞DNA上一类重要的转录调节元件,它们自己并

105

没有启动子活性,却具有增强启动子活性转录起始的效能。 (五)问答题

1. 简述中心法则。

2. DNA复制的基本规律? 3. 简述DNA复制的过程? 4. 简述DNA复制时酶系。

5. 简述原核细胞和真核细胞的RNA聚合酶有何不同? 6. 简述RNA转录的过程? 7. 简述基因工程过程。 参考答案:

(一)名词解释

1.半保留复制:双链DNA的复制方式,其中亲代链分离,每一子代DNA分子由一条亲代链和一条新合成的链组成。

2.不对称转录:转录通常只在DNA的任一条链上进行,这称为不对称转录。 3.逆转录:Temin和Baltimore各自发现在RNA肿瘤病毒中含有RNA指导的DNA聚合酶,才证明发生逆向转录,即以RNA为模板合成DNA。

4.冈崎片段:一组短的DNA片段,是在DNA复制的起始阶段产生的,随后又被连接酶连接形成较长的片段。在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,就可证明冈崎片段的存在。冈崎片段的发现为DNA复制的科恩伯格机理提供了依据。 5.复制叉:复制 DNA分子的 Y形区域。在此区域发生链的分离及新链的合成。

6.领头链:DNA的双股链是反向平行的,一条链是5/→3/方向,另一条是3/→5/方向,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/方向(亦即新合成的DNA沿5/→3/方向)不断延长。所以领头链是连续的。

7.随后链:已知的DNA聚合酶不能催化DNA链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以随后链是不连续的。

8.有意义链:即华森链,华森——克里格型DNA中,在体内被转录的那股DNA链。简写为W strand。 9.光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是光复活作用。

10.重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA链损伤的对应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复。 11.内含子:真核生物的mRNA前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。

12.外显子:真核生物的mRNA前体中,编码序列称为外显子。

13.基因载体:外源DNA片段(目的基因)要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着外源DNA一起进行复制与表达,这种运载工具称为载体。 14.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA构成,其大小从1—200Kb。 (二)、填空题答案

1.领头链;连续的;随从链;不连续的;5†;RNA;5† →3†。 2.NAD+;ATP。 3. ; ;

106

4.有意义链。

5.反向转录;逆转录酶。

6.不作用;不作用;不作用;Up+Gp+Cp+A;UpGp+CpA;GpCp+Up+A; 7.转换;颠换;插入;缺失。 8.氨基;酮基;转换。 9.5†→3†

10.连续 相同 不连续 相反 11.利福平 dNTP

12.5†→3†聚合 3†→5†外切 5†→3外切 焦磷酸解作用,焦磷酸交换作用 13.拓朴异构酶 使超螺旋DNA变为松驰状 14.复制位点 多位点

15.3†→5†核酸外切酶 校对 16.3 DNA聚合酶Ⅲ DNA聚合酶Ⅱ

17.专一的核酸内切酶 解链酶 DNA聚合酶Ⅰ DNA连接酶 18.SSB(单链结合蛋白)

19.RNA引物 DNA聚合酶Ⅲ DNA聚合酶Ⅰ DNA连接酶

20.同一RNA聚合酶 3 RNA聚合酶Ⅰ RNA聚合酶Ⅱ RNA聚合酶Ⅲ 21.启动子 编码 终止子

22.隔裂基因 外显子 内含子 外显子 内含子 23.组 非组 非组 (三)选择题 1.(A)DNA半保留复制需要来自亲代的每一条标记链作模板合成互补链,以保持与亲代相同的完整结构。因此,在无记溶液中进行第一轮复制将产生两个半标记分子。第二轮复制将产生两个半标记分子和两个不带标记的双链DNA分子。 2.(E)在DNA真正能够开始复制之前,必须由解链酶使DNA双链结构局部解链。在每股单链DNA模板上,由RNA聚合酶(引物酶)催化合成一小段(大约10—50个核苷酸)互补RNA引物。然后由DNA聚合酶Ⅲ向引物3†端加入脱氧核苷—5†—三磷酸,从5†→3†方向合成DNA片段(冈崎片段),直至另一RNA引物的5†末端。接着在DNA聚合酶Ⅰ的作用下将RNA引物从5†端逐步降解除去与之相邻的DNA片段由3†端延长,以填补RNA除去后留下的空隙。最后由DNA连接酶将DNA片段连接成完整连续的DNA链。 3.(D)DNA复制三代后,每八个完整DNA双链中将有两个双链分子含有一股亲代链。 4.(E)DNA是由DNA聚合酶Ⅲ复合体复制的。该酶催化脱氧三磷酸核苷以核苷酸的形式加到RNA引物链上,选择只能与亲链DNA碱基互补配对的核苷酸参入。参入的第一个脱氧核苷酸以共价的磷酸二酯键与引物核苷酸相连。链的生长总是从5†向3†延伸的。DNA复制开始于特异起始点,定点双向进行。 5.(A)DNA复制必需胸腺嘧啶(T)与腺嘌呤(A)配对,鸟嘌呤(G)与胞嘧啶(C)配对,从而使双螺旋两链之间部分地靠氨基与酮基间形成的氢键维系起来。链本身是反向平行方向合成的,即题中所述之磷酸二酯键的5†→3†顺序决定其沿3†→5†方向互补。 6.(B)DNA聚合酶Ⅰ在起聚合酶作用时必需要有模板和引物。这个一条肽链的蛋白质除聚合酶活性外还具有3†和5†外切核酸酶活性。在正常DNA复制时,它的作用是水解RNA引物链(5†→3†外切核酸酶活性)并用模板指导的脱氧核苷酸取代它们(聚合功能)。DNA聚合酶Ⅰ也参与DNA修复。例如在切除胸腺嘧啶二聚体中起5†→3†外切核酸酶的作用。在正常DNA复制时,DNA聚合酶Ⅰ表现3†外切核酸酶活性,切除错误参入的脱氧核苷酸残基。冈崎片段是由DNA聚合酶Ⅲ复合体产生的,而不是DNA聚合酶Ⅰ。在除去

107

RNA引物链后,DNA片段通过DNA连接酶连接。DNA聚合酶Ⅱ,其功能目前还不清楚,一些细菌突变体,虽无DNA聚合酶Ⅱ,但却能正常生长。DNA聚合酶Ⅰ则是正常生长所必需的。 7.(B)真核生物中有三种DNA聚合酶,αβ及γ。DNApolα在细胞核DNA复制中起作用;DNApolβ在细胞核DNA修复中起作用;而DNApolγ则在线粒体DNA复制中起作用。它们都需要引物,都用脱氧三磷酸核苷作底物,都按5†→3†方向合成新生DNA链。真核生物DNA聚合酶任何一种均不表现核酸酶活性。 8.(B)DNA复制时,如果两股链按5†→3†方向先合成短的DNA片段,然后再连接成连续的链,这就能使DNA的两条反向互补链能够同时按5†→3†方向的聚合机制进行复制。冈崎首先从大肠杆菌中分离出正在复制的新生DNA,并发现这新生DNA是由一些不连续片段(冈崎片段)所组成。在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,在将细胞DNA变性处理(也就是解链)之后,冈崎分离得到了标记的DNA片段。它们是单链的,并且由于DNA聚合酶Ⅲ复合体用RNA作引物,因此新生冈崎片段以共价键连着小段RNA链,但它们既不是碱基互补的RNA—DNA双链杂合体,也不是来自亲链的片段。新生冈崎片段决不会被核酸酶切除。 9.(D)DNA链内胸腺嘧啶二聚体可因紫外线(UV)照射而形成。专一的修复系统依赖UV—特异的内切核酸酶,它能识别胸腺嘧啶二聚体,并且通常在二聚体5†侧切断磷酸二酯键从而在DNA链内造成一个缺口。损伤序列的切除以及用完整的互补链作为模板重新合成切去的片段都是由DNA聚合酶Ⅰ来完成的。主链与新合成片段之间的裂口则由DNA连接酶接合。碱基缺失、插入、甲基化,或烷基化均不能作为切除修复体系靶子而为UV—特异性内切核酸酶所识别。 10.(C)DNA连接酶能够连接留有缺口的DNA链或闭合单股DNA链以形成环状 DNA分子。该酶需要一股链末端的游离3/-OH和另一股链末端的5/-磷酸,并且要求这两股链是双链DNA的一部分。反应是吸能的,因此需要能源。在大肠杆菌和其它细菌中,能源是NAD+分子中的焦磷酸键。NAD+先与酶形成酶—AMP复合物,同时释放叮NAD的尼克酰胺单核苷酸;酶一AMP复合物上的AMP再转移到DNA链的5/-磷酸基上,使其活化,然后形成磷酸二酯键并释放AMP。 11.(E)RNA聚合酶和DNA聚合酶都是以三磷酸核苷(NTP或dNTP)为其底物,这两种聚合酶都是在生长中的多核苷酸链的3†端加接核苷酸单位。DNA聚合酶合成与DNA互补的DNA。合成与RNA互补的DNA的酶称作逆转录酶。 12.(B)紫外线(260nm)照射可引起DNA分子中同一条链相邻胸腺嘧啶之间形成二聚体,并从该点终止复制。该二聚体可由包括连接酶在内的酶系切除和修复,或在光复合过程中,用较长(330—450nm)或较短(230nm)波长的光照射将其分解。 13.(E)DNA链中插入一个额外核苷酸会引起移码突变并使突变点以后转录的全部mRNA发生翻译错误。题中列出的所有其它突变通常仅引起一个氨基酸的错误(如题中的A或B),或从氨基酸序列中删除一个氨基酸(D),或在氨基酸顺序中完全没有错误。需要指出的是,如果A或B突变导致生成“无意义”或链终止密码子,则这种突变所造成的后果也会象移码突变那样是致死的。 14.(E)在Hbs中,β链上一个缬氨酸残基替换了谷氨酸,这是由于一个核苷酸碱基的点突变所造成的后果。即位于三联体第二位的胸腺嘧啶转换为腺嘌呤。 15.(A)自发点突变多半是由于嘌呤或嘧啶碱中氢原子的互变异构移位而引起的。在DNA复制中,这种移位会引起碱基配对的改变。某些诱变剂如5—溴尿嘧啶和2—氨基嘌呤可促进DNA碱基的互变异构。 16.(A)吖啶衍生物可导致一个碱基对的插入或缺失,从而引起移码突变。5—溴尿嘧啶

108

可引起转换突变,因为溴取代了胸腺嘧啶的甲基,这样则增加了烯醇式互变异构物与鸟嘌呤而不是腺嘌呤进行碱基配对的可能性。咪唑硫嘌呤可转变为6—巯基嘌呤,后者是嘌呤的类似物。乙基乙磺酸可通过使鸟嘌呤烷基化引起转换突变。 17.(D)5—溴尿嘧啶可代替胸腺嘧啶参入到DNA中,从而产生密度较高的DNA。然后可在氯化铯密度梯度中用离心法对新合成的DNA进行定量分析。DNA中的5—溴尿嘧啶较正常胸嘧啶既不更活泼又不更易被断裂,也不能象吖啶染料那样引起移码突变。 18.(B)RNA聚合酶必须以DNA为模板催化合成RNA,通常只转录双螺旋DNA其中的一条链。RNA链的合成方向是从5†到3†端,产物从来没有环状分子。与DNA聚合酶不同,RNA聚合酶不需要引物。 19.(A)ζ因子是RNA聚合酶的一个亚基,ζ因子本身没有催化功能,它的作用是与核心酶结合,对转录的起始特异性起决定性的作用。在有ζ因子的情况下,RNA聚合酶将选择DNA准备转录的那条链,并在适当的启动基因部位开始转录。 20.(B)真核生物有三种RNA聚合酶,它们分别催化45S—rRNA(RAN聚合酶Ⅰ)mRNA和SnRNA(RNA聚合酶Ⅱ),以及tRNA和5S—rRNA(RNA聚合酶Ⅲ)的合成。这三种酶可以根据它们对抗生素α—鹅膏蕈碱的敏感度不同加以区别:RNA聚合酶Ⅰ耐受;RNA聚合酶Ⅱ极敏感;RNA聚合酶Ⅲ中等敏感。RNA聚合酶Ⅰ催化合成的45S原始转录本,经转录后加工而成为成熟的18S—rRNA,5.8S—rRNA和28S—rRNA。 21.(D)真核生物DNA在多个复制叉上按半保留方式复制。真核生物有三种DNA聚合酶:α、β及γ。分别参加细胞核DNA复制,细胞核DNA修复,以及线粒体DNA复制。真核生物DNA聚合酶一般都不具有核酸酶活性。真核DNA复制时,组蛋白不从DNA解离下来,而是留在含有领头子链的双链DNA上。新合成的组蛋白则与随从子链结合。 22.(C)原核细胞转录终止不是随机进行的,据目前所知有两种转录终止方式即依赖Rho (ρ)因子与不依赖Rho因子的方式。不依赖Rho因子的转录终止与转录产物形成二级结构有关,即在基因的末端含G—C丰富的回文结构,当RNA转录延长至该部位时,按模板转录出的RNA碱基序列会立即形成发夹型的二级结构,这种二级结构是阻止转录继续向下游推进的关键。Rho因子是RNA聚合酶之外的一种蛋白质,有控制转录终止的作用。Rho因子本身似乎就具有ATP酶的活性。

23.B:DNA连接酶催化DNA链两段之间形成磷酸二酯键,但这两段必须是在DNA双螺旋结构之中,它不能将两条游离的单链DNA分子连接起来。在大肠杆菌中,成键所需能量来自NAD,产物是AMP和烟酰胺单核苷酸;而在某些动物细胞以及噬菌体中,则以ATP作为能源。DNA连接酶在DNA合成、修复以及重组中都是十分重要的。

24.B:真核mRNA是从2至20千碱基长的细胞核RNA前体——核不均—RNA(hnRNA)形成的。所有真核mRNA5†端均具有5†—5†焦磷酸连接的7-甲基鸟苷(帽结构)。大多数真核mRNA的3†端连有150至200个核苷酸长度的聚腺苷酸尾链。从mRNA前体切除内含子是由具有高度专一性的酶性催化完成的。内含子是不被翻译的。真核生物mRNA是单顺反子的。

(四)是非题

1.对 2.对 3.错 4.错 5.错 6.错 7.对 8.错 9.对 10.对 11.对 12.对 (五)问答题

1.答:在细胞分裂过程中通过DNA的复制把遗传信息由亲代传递给子代,在子代的个体发育过程中遗传信息由DNA传递到RNA,最后翻译成特异的蛋白质;在RNA病毒中RNA具有自我复制的能力,并同时作为mRNA,指导病毒蛋白质的生物合成;在致癌RNA病毒中,RNA还以逆转录的方式将遗传信息传递给DNA分子。

109

2.答:

(1)复制过程是半保留的。

(2)细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DNA复制则可以在多个不同部位起始。

(3)复制可以是单向的或是双向的,以双向复制较为常见,两个方向复制的速度不一定相同。

(4)两条DNA链合成的方向均是从5’向3’方向进行的。

(5)复制的大部分都是半不连续的,即其中一条领头链是相对连续的,其他随后链则是不连续的。

(6)各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并用DNA填补余下的空隙。

3.答:DNA复制从特定位点开始,可以单向或双向进行,但是以双向复制为主。由于 DNA双链的合成延伸均为5†→3†的方向,因此复制是以半不连续的方式进行,可以概括为:双链的解开;RNA引物的合成;DNA链的延长;切除RNA引物,填补缺口,连接相邻的DNA片段。

(1)双链的解开 在DNA的复制原点,双股螺旋解开,成单链状态,形成复制叉,分别作为模板,各自合成其互补链。在复制叉上结合着各种各样与复制有关的酶和辅助因子。 (2)RNA引物的合成 引发体在复制叉上移动,识别合成的起始点,引发RNA引物的合成。移动和引发均需要由ATP提供能量。以DNA为模板按5†→3†的方向,合成一段引物RNA链。引物长度约为几个至10个核苷酸。在引物的5†端含3个磷酸残基,3†端为游离的羟基。

(3)DNA链的延长 当RNA引物合成之后,在DNA聚合酶Ⅲ的催化下,以四种脱氧核糖核苷5†-三磷酸为底物,在RNA引物的3†端以磷酸二酯键连接上脱氧核糖核苷酸并释放出PPi。DNA链的合成是以两条亲代DNA链为模板,按碱基配对原则进行复制的。亲代DNA的双股链呈反向平行,一条链是5†→3†方向,另一条链是3†→5†方向。在一个复制叉内两条链的复制方向不同,所以新合成的二条子链极性也正好相反。由于迄今为止还没有发现一种DNA聚合酶能按3†→5†方向延伸,因此子链中有一条链沿着亲代DNA单链的3†→5†方向(亦即新合成的DNA沿5†→3†方向)不断延长。

(4)切除引物,填补缺口,连接修复 当新形成的冈崎片段延长至一定长度,其3†-OH端与前面一条老片断的5†断接近时,在DNA聚合酶Ⅰ的作用下,在引物RNA与DNA片段的连接处切去RNA引物后留下的空隙,由DNA聚合酶Ⅰ催化合成一段DNA填补上;在DNA连接酶的作用下,连接相邻的DNA链;修复掺入DNA链的错配碱基。这样以两条亲代DNA链为模板,就形成了两个DNA双股螺旋分子。每个分子中一条链来自亲代DNA,另一条链则是新合成的。 4.答:(1)原核细胞大肠杆菌的RNA聚合酶研究的较深入。这个酶的全酶由5种亚基(α2ββ†δω)组成,还含有2个Zn原子。在RNA合成起始之后,δ因子便与全酶分离。不含δ因子的酶仍有催化活性,称为核心酶。δ亚基具有与启动子结合的功能,β亚基催化效率很低,而且可以利用别的DNA的任何部位作模板合成RNA。加入δ因子后,则具有了选择起始部位的作用,δ因子可能与核心酶结合,改变其构象,从而使它能特异地识别DNA模板链上的起始信号。

(2)真核细胞的细胞核内有RNA聚合酶I、II和III,通常由4~6种亚基组成,并含有Zn2+。RNA聚合酶I存在于核仁中,主要催化rRNA前体的转录。RNA聚合酶Ⅱ和Ⅲ存在于核质中,分别催化mRNA前体和小分子量RNA的转录。此外线粒体和叶绿体也含有RNA聚合酶,其特性类似原核细胞的RNA聚合酶。

110

5.答:RNA转录过程为起始位点的识别、起始、延伸、终止。

(1)起始位点的识别 RNA聚合酶先与DNA模板上的特殊启动子部位结合,ζ因子起着识别DNA分子上的起始信号的作用。在ζ亚基作用下帮助全酶迅速找到启动子,并与之结合生成较松弛的封闭型启动子复合物。这时酶与DNA外部结合,识别部位大约在启动子的-35位点处。接着是DNA构象改变活化,得到开放型的启动子复合物,此时酶与启动子紧密结合,在-10位点处解开DNA双链,识别其中的模板链。由于该部位富含A-T碱基对,故有利于DNA解链。开放型复合物一旦形成,DNA就继续解链,酶移动到起始位点。 (2)起始留在起始位点的全酶结合第一个核苷三磷酸。第一个核苷三磷酸常是GTP或ATP。形成的启动子、全酶和核苷三磷酸复合物称为三元起始复合物,第一个核苷酸掺入的位置称为转录起始点。这时ζ亚基被释放脱离核心酶。

(3)延伸 从起始到延伸的转变过程,包括ζ因子由缔合向解离的转变。DNA分子和酶分子发生构象的变化,核心酶与DNA的结合松弛,核心酶可沿模板移动,并按模板序列选择下一个核苷酸,将核苷三磷酸加到生长的RNA链的3†-OH端,催化形成磷酸二酯键。转录延伸方向是沿DNA模板链的3†→5†方向按碱基酸对原则生成5†→3†的RNA产物。RNA链延伸时,RNA聚合酶继续解开一段DNA双链,长度约17个碱基对,使模板链暴露出来。新合成的RNA链与模板形成RNA-DNA的杂交区,当新生的RNA链离开模板DNA后,两条DNA链则重新形成双股螺旋结构。

(4) 终止 在DNA分子上有终止转录的特殊碱基顺序称为终止子,它具有使RNA聚合酶停止合成RNA和释放RNA链的作用。这些终止信号有的能被RNA聚合酶自身识别,而有的则需要有ρ因子的帮助。ρ因子是一个四聚体蛋白质,它能与RNA聚合酶结合但不是酶的组分。它的作用是阻RNA聚合酶向前移动,于是转录终止,并释放出已转录完成的RNA链。对于不依赖于ρ因子的终止子序列的分析,发现有两个明显的特征:即在DNA上有一个15~20个核苷酸的二重对称区,位于RNA链结束之前,形成富含G-C的发夹结构。接着有一串大约6个A的碱基序列它们转录的RNA链的末端为一连串的U。寡聚U可能提供信号使RNA聚合酶脱离模板。在真核细胞内,RNA的合成要比原核细胞中的复杂得多。 6. 答:(1)目的基因调取 体外操作DNA的主要步骤之一是提取载体DNA和所需要的外源目的基因。在细胞中DNA并非以游离态分子存在,而是和RNA及蛋白质结合在一起形成复合体。DNA纯化的基本步骤是:(1)从破坏的细胞壁和膜里释放出可溶性的DNA;(2)通过变性或蛋白质分解,使DNA和蛋白质的复合体解离;(3)将DNA从其它大分子中分离出来;(4)DNA浓度和纯度的光学测定。

(2)载体选择 外源DNA片段(目的基因)要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着外源DNA一起进行复制与表达,这种运载工具称为载体。载体必须具备下列条件:①在受体细胞中,载体可以独立地进行复制。所以载体本身必须是一个复制单位,称复制子,具有复制起点。而且插入外源DNA后不会影响载体本身复制的能力。②易于鉴定、筛选。也就是说,容易将带有外源DNA的重组体与不带外源DNA的载体区别开来。③易于引入受体细胞。

(3)连接 外源DNA与载体DNA之间可以通过多种方式相连接,主要有以下几种:①粘性末端连接;②平头末端连接;③接头连接等。

(4)转化 任何外源DNA重组到载体上,然后转入受体细胞中复制繁殖,这一过程称为DNA的克隆。外源DNA进入受体细胞并使它获得新遗传特性的过程称为转化。转化作用是将外源DNA引入细胞的过程。

(5)筛选 由于细胞转化的频率较低,所以从大量的宿主细胞中筛选出带有重组体的细胞并不是很容易的,当前,在实验室中,常用的筛选手段有以下几种:① 插入失活;②

111

菌落原位杂交;③ 免疫学方法.此外,对重组体转化的鉴定还可以采用表现型的鉴定;对重组质粒纯化并重新转化;限制性酶切图谱的绘制;重组质粒上的基因定位等更深入的方法。

四川大学生物化学代谢调节部分考试题

(一)名词解释

1.诱导酶(Inducible enzyme) 2.标兵酶(Pacemaker enzyme) 3.操纵子(Operon) 4.衰减子(Attenuator) 5.阻遏物(Repressor) 6.辅阻遏物(Corepressor)

7.降解物基因活化蛋白(Catabolic gene activator protein) 8.腺苷酸环化酶(Adenylate cyclase) 9.共价修饰(Covalent modification) 10.级联系统(Cascade system)

11.反馈抑制(Feedback inhibition) 12.交叉调节(Cross regulation)

13.前馈激活(Feedforward activation) 14.钙调蛋白(Calmodulin) (二)英文缩写符号

1. CAP(Catabolic gene activator protein): 2. PKA(Protein kinase): 3. CaM(Calmkdulin):

4. ORF(Open reading frame): (三)填空题

1. 哺乳动物的代谢调节可以在 、 、 和 四个水平上进行。 2. 酶水平的调节包括 、 和 。其中最灵敏的调节方式是 。 3. 酶合成的调节分别在 、 和 三个方面进行。

4. 合成诱导酶的调节基因产物是 ,它通过与 结合起调节作用。

5. 在分解代谢阻遏中调节基因的产物是 ,它能与 结合而被活化,帮助 与启动子结合,促进转录进行。

6. 色氨酸是一种 ,能激活 ,抑制转录过程。 7. 乳糖操纵子的结构基因包括 、 和 。

8. 在代谢网络中最关键的三个中间代谢物是 、 和 。 9. 酶活性的调节包括 、 、 、 、 和 。

10.共价调节酶是由 对酶分子进行 ,使其构象在 和 之间相互转变。

11.真核细胞中酶的共价修饰形式主要是 ,原核细胞中酶共价修饰形式主要是 。 (四)选择题

1. 利用操纵子控制酶的合成属于哪一种水平的调节:

A.翻译后加工 B.翻译水平 C.转录后加工 D.转录水平 2. 色氨酸操纵子调节基因产物是:

112

A.活性阻遏蛋白 B.失活阻遏蛋白 C.cAMP受体蛋白 D.无基因产物 3. 下述关于启动子的论述错误的是:

A.能专一地与阻遏蛋白结合 B.是RNA聚合酶识别部位 C.没有基因产物 D.是RNA聚合酶结合部位 4. 在酶合成调节中阻遏蛋白作用于:

A.结构基因 B.调节基因 C.操纵基因 D.RNA聚合酶 5. 酶合成的调节不包括下面哪一项: A.转录过程 B.RNA加工过程

C.mRNA翻译过程 D.酶的激活作用

6. 关于共价调节酶下面哪个说法是错误的:

A.都以活性和无活性两种形式存在 B.常受到激素调节 C.能进行可逆的共价修饰 D.是高等生物特有的调节方式 7. 被称作第二信使的分子是: A.cDNA B.ACP C.cAMP D.AMP

8.反馈调节作用中下列哪一个说法是错误的:

A.有反馈调节的酶都是变构酶 B.酶与效应物的结合是可逆的 C.反馈作用都是使反速度变慢 D.酶分子的构象与效应物浓度有关 (五)是非判断题

()1.分解代谢和合成代谢是同一反应的逆转,所以它们的代谢反应是可逆的。 ()2.启动子和操纵基因是没有基因产物的基因。 ()3.酶合成的诱导和阻遏作用都是负调控。

()4.衰减作用是在转录水平上对基因表达进行调节的一种方式。 ()5.与酶数量调节相比,对酶活性的调节是更灵敏的调节方式。 ()6.果糖1,6二磷酸对丙酮酸激酶具有反馈抑制作用。

()7.序列反应中几个终产物同时过多时的调节作用叫累积调节。 ()8.酶的共价修饰能引起酶分子构象的变化。 ()9.脱甲基化作用能使基因活化。

()10.连锁反应中,每次共价修饰都是对原始信号的放大. (六)问答题

1.糖代谢与脂类代谢的相互关系? 2.糖代谢与蛋白质代谢的相互关系? 3.蛋白质代谢与脂类代谢的相互关系? 4.简述酶合成调节的主要内容?

5.以乳糖操纵子为例说明酶诱导合成的调控过程?

6.以糖原磷酸化酶激活为例,说明级联系统是怎样实现反应信号放大的? 7.二价反馈抑制作用有哪些主要类型? 8.代谢的区域化有何意义? 参考答案: (一)、名词解释:

1. 诱导酶:由于诱导物的存在,使原来关闭的基因开放,从而引起某些酶的合成数量明显增加,这样的酶称为诱导酶

2. 标兵酶:在多酶促系列反应中,受控制的部位通常是系列反应开头的酶,这个酶一般是变构酶,也称标兵酶。

113

3. 操纵子:在转录水平上控制基因表达的协调单位,包括启动子(P)、操纵基因(O)和在功能上相关的几个结构基因。

4. 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导RNA通过构象变化终止或减弱转录。

5. 阻遏物:由调节基因产生的一种变构蛋白,当它与操纵基因结合时,能够抑制转录的进行。

6. 辅阻遏物:能够与失活的阻碣蛋白结合,并恢复阻遏蛋白与操纵基因结合能力的物质。辅阻遏物一般是酶反应的产物。

7. 降解物基因活化蛋白:由调节基因产生的一种cAMP受体蛋白,当它与cAMP结合时被激活,并结合到启动子上促进转录进行。是一种正调节作用。

8. 腺苷酸环化酶:催化ATP焦磷酸裂解产生环腺苷酸(cAMP)的酶。

9. 共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶分子构象变化,从而调节代谢的方向和速度。

10. 级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。

11. 反馈抑制:在代谢反应中,反应产物对反应过程中起作用的酶产生的抑制作用。 12. 交叉调节:代谢产物不仅对本身的反应过程有反馈抑制作用,而且可以控制另一代谢物在不同途径中的合成。

13. 前馈激活:在反应序列中,前身物质对后面的酶起激活作用,使反应向前进行。 14. 钙调蛋白:一种依赖于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变化,调解酶的活性。如磷酸化酶激酶是一种依赖于钙的蛋白激酶。 (二)英文缩写符号

1. CAP(Catabolic gene activator protein):降解物基因活化蛋白 2. PKA(Protein kinase):蛋白激酶A 3. CaM(Calmkdulin):钙调蛋白 4. ORF(Open reading frame):开放阅读框架 (三)填空题

1. 细胞内酶水平;细胞水平;激素水平;神经水平 2. 酶的区域化;酶数量的调节;酶活性的调节 3. 转录水平;转录后加工和运输;翻译水平 4. 阻遏蛋白;操纵基因

5. 降解物基因活化蛋白(CAP);环腺苷酸(cAMP);RNA聚合酶 6. 辅阻遏物;阻遏蛋白 7. LacZ;LacY;LacA

8. 6-磷酸葡萄糖;丙酮酸;乙酰辅酶A

9. 酶原激活;酶共价修饰;变构调节;反馈调节;辅因子调节;能荷调节 10. 小分子基团;共价修饰;有活性;无活性 11. 磷酸化和脱磷酸化;核苷酰化和脱核苷酰化 (四)选择题

1. D:操纵子在酶合成的调节中是通过操纵基因的开闭来控制结构基因表达的,所以是转录水平的调节。细胞中酶的数量也可以通过其它三种途径进行调节。

2. B:色氨酸操纵子控制合成色氨酸五种酶的转录,色氨酸是蛋白质氨基酸,正常情况下调节基因产生的是无活性阻遏蛋白,转录正常进行。但当细胞中色氨酸的含量超过蛋白质合成的需求时,色氨酸变成辅阻遏物来激活阻遏蛋白,使转录过程终止;诱导酶的

114

操纵子调节基因产生的是活性阻遏物;组成酶的操纵子调节基因不产生阻遏蛋白;有分解代谢阻遏作用的操纵子调节基因产物是cAMP受体蛋白(降解物基因活化蛋白)。 3. A:操纵基因是阻遏蛋白的结合部位。

4. C:活性阻遏蛋白与操纵基因结合使转录终止。

5. D:酶的激活作用是对酶活性的调节,与酶合成的调节无关。

6.D:共价调节酶是高等生物和低等生物都具有的一种酶活性调节方式。

7.C:cDNA 为互补DNA,ACP为酰基载体蛋白,AMP为腺苷酸。cAMP由腺苷酸环化酶催化ATP焦磷酸裂解环化生成,腺苷酸环化酶可感受激素信号而被激活,所以,一般把激素称为“第一信使”,把cAMP称为“第二信使”。

8.C:反馈作用包括正反馈(反馈激活)和负反馈(反馈抑制),正反馈对酶起激活作用,负反馈对酶起抑制作用。 (五)是非判断题

1.错:分解代谢和合成代谢虽然是同一反应的逆转,但它们各自的代谢途径不完全相同,如在糖酵解途径中,葡萄糖被降解成丙酮酸的过程有三步反应是不可逆的,在糖异生过程中需要由其它的途径或酶来代替。

2.对:操纵子包括启动子、操纵基因和结构基因,启动子是RNA聚合酶识别和结合部位,操纵基因可以与阻遏蛋白结合控制基因表达,两者都没有基因产物。结构基因的转录产物为与DNA互补的RNA。

3.对:在酶合成的诱导中,调节基因产生的活性阻遏物在没有诱导物的情况下,能与操纵基因结合,使转录终止和减弱;在酶合成的阻遏中,调节基因产生的失活阻遏物与辅阻遏物结合后被活化,再与操纵基因结合,也能使转录终止和减弱;

4.对:衰减作用是通过对已转录的前导RNA翻译后形成的终止子,对已开始的转录过程进行调节。

5.对:酶合成的调节需要经过转录、翻译、加工等过程,酶的降解需要蛋白酶的作用,它们都是慢速的调节过程。酶活性的调节则直接作用于酶分子本身,所以是更灵敏更迅速的调节过程。

6.错:果糖1,6二磷酸对丙酮酸激酶具有前馈激活作用。因为,在糖酵解的序列反应中,果糖1,6二磷酸位于丙酮酸激酶催化的反应之前,果糖1,6二磷酸对丙酮酸激酶的前馈激活作用有利于酵解反应的进行。

7.错:叫协同调节。几个终产物中任何一个产物过多都能部分抑制某一酶的活性,要达到最大的效果几个终产物必需同时过多,这种调节作用叫累积调节。

8.对:在酶分子中共价引入或去除某种小分子基团,能使酶蛋白的空间结构在有活性和无活性构象之间发生转变。

9.对:DNA的碱基通过脱甲基化作用能使染色质变疏松,基因得到活化。而甲基化作用可关闭某些基因的表达。

10.对:因为在连锁反应中,每次共价修饰都相当于增加一级酶促反应,使原始信号得到一次放大。

(六)问答题(解题要点) 1. 答:(1)糖转变为脂肪:糖酵解所产生的磷酸二羟丙同酮还原后形成甘油,丙酮酸氧化脱羧形成乙酰辅酶A是脂肪酸合成的原料,甘油和脂肪酸合成脂肪。

(2)脂肪转变为糖:脂肪分解产生的甘油和脂肪酸,可沿不同的途径转变成糖。甘油经磷酸化作用转变成磷酸二羟丙酮,再异构化变成3-磷酸甘油醛,后者沿糖酵解逆反应生成糖;脂肪酸氧化产生乙酰辅酶A,在植物或微生物体内可经乙醛酸循环和糖异生作用生成糖,也可经糖代谢彻底氧化放出能量。

115

(3)能量相互利用:磷酸戊糖途径产生的NADPH直接用于脂肪酸的合成,脂肪分解产生的能量也可用于糖的合成。 2. 答:(1)糖是蛋白质合成的碳源和能源:糖分解代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸、磷酸烯醇式丙酮酸、4-磷酸赤藓糖等是合成氨基酸的碳架。糖分解产生的能量被用于蛋白质的合成。

(2)蛋白质分解产物进入糖代谢:蛋白质降解产生的氨基酸经脱氨后生成α-酮酸,α-酮酸进入糖代谢可进一步氧化放出能量,或经糖异生作用生成糖。 3. 答:(1)脂肪转变为蛋白质:脂肪分解产生的甘油可进一步转变成丙酮酸、α-酮戊二酸、草酰乙酸等,再经过转氨基作用生成氨基酸。脂肪酸氧化产生乙酰辅酶A与草酰乙酸缩合进入三羧酸循环,能产生谷氨酸族和天冬氨酸族氨基酸。

(2)蛋白质转变为脂肪:在蛋白质氨基酸中,生糖氨基酸通过丙酮酸转变成甘油,也可以氧化脱羧后转变成乙酰辅酶A,用于脂肪酸合成。生酮氨基酸在代谢反应中能生成乙酰乙酸,由乙酰乙酸缩合成脂肪酸。丝氨酸脱羧后形成胆氨,胆氨甲基化后变成胆碱,后者是合成磷脂的组成成分。 4. 答:(1)转录水平的调节:负调控作用(酶合成的诱导和阻遏);正调控作用(降解物基因活化蛋白);衰减作用(衰减子)。

(2)转录后的的调节:转录后mRNA的加工,mRNA由细胞核向细胞质的运输,mRNA细胞中的定位和组装。 (3)翻译水平的调节:mRNA本身核苷酸组成和排列(如SD序列),反义RNA的活性,mRNA的稳定性等都是翻译水平的调节的重要内容。 5. 答:(1)乳糖操纵子:操纵子是指在转录水平上控制基因表达的协调单位,包括启动子(P)、操纵基因(O)和在功能上相关的几个结构基因,操纵子可受调节基因的控制。乳糖操纵子是三种乳糖分解酶的控制单位。

(2)阻遏过程:在没有诱导物(乳糖)情况下,调节基因产生的活性阻遏蛋白与操纵基因结合,操纵基因被关闭,操纵子不转录。

(3)诱导过程:当有诱导物(乳糖)的情况下,调节基因产生的活性阻遏蛋白与诱导物结合,使阻遏蛋白构象发生改变,失去与操纵基因结合的能力,操纵基因被开放,转录出三种乳糖分解酶(LacZ、LacY、LacA)。 6. 答:(1)级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。糖原磷酸化酶的激活过程就是一个例子。

(2)放大过程:a-激素(如肾上腺素)使腺苷酸环化酶活化,催化ATP和生成cAMP。 b- cAMP使蛋白激酶活化,使无活力的磷酸化酶b激酶转变成有活力的 磷酸化酶b激酶。 c-磷酸化酶b激酶使磷酸化酶b转变成激活态磷酸化酶a。 d-磷酸化酶a使糖原分解为磷酸葡萄糖。

每次激活都是一次共价修饰,也是对原始信号的一次放大过程。 7. 答:(1)二价反馈抑制:在有分支的序列反应中,产生两种或两种以上的终产物,都对序列反应开头的酶起反馈抑制作用。

(2)主要类型:同工酶反馈抑制;顺序反馈抑制;协同反馈抑制;累积反馈抑制。 8.答:(1)消除酶促反应之间的干扰。

(2)使代谢途径中的酶和辅因子得到浓缩,有利于酶促反应进行。 (3)使细胞更好地适应环境条件的变化。 (4)有利于调节能量的分配和转换。

116

四川大学生物化学蛋白质合成部分考试题

(一)名词解释 1.密码子(codon)

2.反义密码子(synonymous codon) 3.反密码子(anticodon)

4.变偶假说(wobble hypothesis) 5.移码突变(frameshift mutant) 6.氨基酸同功受体(isoacceptor) 7.反义RNA(antisense RNA) 8.信号肽(signal peptide) 9.简并密码(degenerate code) 10.核糖体(ribosome) 11.多核糖体(poly some)

12.氨酰基部位(aminoacyl site) 13.肽酰基部位(peptidy site)

14.肽基转移酶(peptidyl transferase)

15.氨酰- tRNA合成酶(amino acy-tRNA synthetase) 16.蛋白质折叠(protein folding) 17.核蛋白体循环(polyribosome) 18.锌指(zine finger)

19.亮氨酸拉链(leucine zipper)

20.顺式作用元件(cis-acting element) 21.反式作用因子(trans-acting factor) 22.螺旋-环-螺旋(helix-loop-helix) (二)英文缩写符号

1.IF(initiation factor): 2.EF(elongation factor): 3.RF(release factor):

4.hnRNA(heterogeneous nuclear RNA): 5.fMet-tRNAf : 6.Met-tRNAi : (三) 填空题

1.蛋白质的生物合成是以______作为模板,______作为运输氨基酸的工具,_____作为合成的场所。

2.细胞内多肽链合成的方向是从_____端到______端,而阅读mRNA的方向是从____端到____端。

3.核糖体上能够结合tRNA的部位有_____部位,______部位。

4.蛋白质的生物合成通常以_______作为起始密码子,有时也以_____作为起始密码子,以______,______,和______作为终止密码子。

5.SD序列是指原核细胞mRNA的5ˊ端富含_____碱基的序列,它可以和16SrRNA的3ˊ端的_____

序列互补配对,而帮助起始密码子的识别。

6.原核生物蛋白质合成的起始因子(IF)有_____种,延伸因子(EF)有_____种,终止

117

释放(RF)

有_____种;而真核生物细胞质蛋白质合成的延伸因子通常有_____种,真菌有_____种,终止释放因子有_____种。

7.原核生物蛋白质合成中第一个被掺入的氨基酸是_____。

8.无细胞翻译系统翻译出来的多肽链通常比在完整的细胞中翻译的产物要长,这是因为_____。

9.已发现体内大多数蛋白质正确的构象的形成需要_____的帮助。 10.分子伴侣通常具_____酶的活性。

11.蛋白质内含子通常具有_____酶的活性。

12.某一tRNA的反密码子是GGC,它可识别的密码子为_____和_____。 13.环状RNA不能有效地作为真核生物翻译系统的模板是因为_____。

14.在真核细胞中,mRNA是由_____经_____合成的,它携带着_____。它是由_____降解成的,大多数真核细胞的mRNA只编码_____。

15.生物界总共有_____个密码子。其中_____个为氨基酸编码;起始密码子为_____;终止密码子为_____,_____,_____。

16.氨酰- tRNA合成酶对_____和_____均有专一性,它至少有两个识别位点。

17.原核细胞内起始氨酰- tRNA为__ ___;真核细胞内起始氨酰- tRNA为 _____。 18.原核生物核糖体50S亚基含有蛋白质合成的_____部位和_____部位,而mRNA结合部位_____。

19.许多生物核糖体连接于一个mRNA形成的复合物称为_____。 20.肽基转移酶在蛋白质生物合成中的作用是催化_____和_____。 21.核糖体___亚基上的___协助识别起始密码子。

22.延长因子G又称___,它的功能是___,但需要___。 23.ORF是指___,已发现最小的ORF只编码___个氨基酸。 24.基因表达包括_____和_____。

25.遗传密码的特点有方向性、连续性_____和_____。

26.氨酰- tRNA合成酶利用_____供能,在氨基酸_____基上进行活化,形成氨基酸AMP中间复合物。

27.原核生物肽链合成启始复合体由mRNA _____和_____组成。 28.真核生物肽链合成启始复合体由mRNA _____和_____组成。 29.肽链延伸包括进位_____和_____三个步骤周而复始的进行。 30.原核生物肽链合成后的加工包括_____和_____。

31.链霉素和卡那霉素能与核蛋白体_____亚基结合,改变其构象,引起_____导致合成的多肽链一级结构改变。

32.氯霉素能与核蛋白体_____亚基结合,抑制_____酶活性,从而抑制蛋白质合成。 33.乳糖操纵子的控制区启动子上游有_____结合位点,当此位点与_____结合时,转录可增强一千倍左右。

34.真核生物蛋白质因子与DNA相互作用的基元较常见的有_____和_____。 35.乳糖操纵子的诱导物是_____,色氨酸操纵子的辅阻遏物是_____。

36.分泌性蛋白质多肽链合成后的加工包括_____、剪裁和天然构象的形成。 37.Ras癌基因的产物是_____,src癌基因的产物是_____。 (四)选择题

1.预测一下哪一种氨酰- tRNA合成酶不需要有较对的功能:

A.甘氨酰- tRNA合成酶 B.丙氨酰- tRNA合成酶

118

C.精氨酰- tRNA合成酶 D.谷氨酰- tRNA合成酶 2.某一种tRNA的反密码子是5†UGA3†,它识别的密码子序列是: A.UCA B.ACU C.UCG D.GCU 3.为蛋白质生物合成中肽链延伸提供能量的是:

A.ATP B.CTP C.GTP D.UTP

4.一个N端氨基酸为丙氨酸的20肽,其开放阅读框架至少应由多少核苷酸残基组成: A.60 B.63 C.66 D.69 5.在蛋白质生物合成中tRNA的作用是:

A.将一个氨基酸连接到另一个氨基酸上 B.把氨基酸带到mRNA指定的位置上 C.增加氨基酸的有效浓度 D.将mRNA连接到核糖体上 6.下列对原核细胞mRNA的论述那些是正确的: A.原核细胞的mRNA多数是单顺反子的产物

B.多顺反子mRNA在转录后加工中切割成单顺反子mRNA

C.多顺反子mRNA翻译成一个大的蛋白质前体,在翻译后加工中裂解成若干成熟的蛋白质

D.多顺反子mRNA上每个顺反子都有自己的起始和终止密码子;分别翻译成各自的产物 7.在蛋白质分子中下面所列举的氨基酸哪一种最不容易突变? A.Arg B.Glu C.Val D.Asp

8.根据摆动学说,当一个tRNA分子上的反密码子的第一个碱基为次黄嘌呤时,它可以和mRNA密码子的第三位的几种碱基配对:

A.1 B.2 C.3 D.4 9.以下有关核糖体的论述哪项是不正确的: A.核糖体是蛋白质合成的场所

B.核糖体小亚基参与翻译起始复合物的形成,确定mRNA的解读框架 C.核糖体大亚基含有肽基转移酶活性 D.核糖体是储藏核糖核酸的细胞器

10.关于密码子的下列描述,其中错误的是:

A.每个密码子由三个碱基组成 B.每一密码子代表一种氨基酸 C.每种氨基酸只有一个密码子 D.有些密码子不代表任何氨基酸 11.如果遗传密码是四联体密码而不是三联体,而且tRNA反密码子前两个核苷酸处于摆动的位置,那么蛋白质正常合成大概需要多少种tRNA:

A.约256种不同的tRNA B.150~250种不同的tRNA

C.与三联体密码差不多的数目 D.取决于氨酰-tRNA合成酶的种类 12.摆动配对是指下列哪个碱基之间配对不严格: A.反密码子第一个碱基与密码子第三个碱基 B.反密码子第三个碱基与密码子第一个碱基 C.反密码子和密码子第一个碱基 D.反密码子和密码子第三个碱基

13.在蛋白质合成中,把一个游离氨基酸掺入到多肽链共须消耗多少高能磷酸键: A.1 B.2 C.3 D.4 14.蛋白质的生物合成中肽链延伸的方向是:

A.C端到N端 B.从N端到C端 C.定点双向进行 D.C端和N端同时进行 15.核糖体上A位点的作用是:

A.接受新的氨基酰-tRNA到位 B.含有肽机转移酶活性,催化肽键的形成

119

C.可水解肽酰tRNA、释放多肽链 D.是合成多肽链的起始点 16.蛋白质的终止信号是由:

A.tRNA识别 B.转肽酶识别 C.延长因子识别 D.以上都不能识别

17.下列属于顺式作用元件的是:

A.启动子 B.结构基因 C. RNA聚合酶 D. 录因子Ⅰ 18.下列属于反式作用因子的是:

A.启动子 B.增强子 C.终止子 D.转录因子 19.下列有关癌基因的论述,哪一项是正确的:

A.癌基因只存在病毒中 B.细胞癌基因来源于病毒基因 C.癌基因是根据其功能命名的 D.细胞癌基因是正常基因的一部分 20.下列何者是抑癌基因

A.ras基因 B.sis基因 C.P53基因 D.src基因 (五)是非判断题

( )1.由于遗传密码的通用性真核细胞的mRNA可在原核翻译系统中得到正常的翻译。 ( )2.核糖体蛋白不仅仅参与蛋白质的生物合成。

( )3.在翻译起始阶段,有完整的核糖体与mRNA的5†端结合,从而开始蛋白质的合成。

( )4.所有的氨酰-tRNA的合成都需要相应的氨酰-TRNA合成酶的催化。

( )5.EF-Tu的GTPase 活性越高,翻译的速度就越快,但翻译的忠实性越低。 ( )6.在蛋白质生物合成中所有的氨酰-tRNA都是首先进入核糖体的A部位。 ( )7.tRNA的个性即是其特有的三叶草结构。

( )8.从DNA分子的三联体密码可以毫不怀疑的推断出某一多肽的氨基酸序列,但氨基酸序列并不能准确的推导出相应基因的核苷酸序列。

( )9.与核糖体蛋白相比,rRNA仅仅作为核糖体的结构骨架,在蛋白质合成中没有什么直接的作用。

( )10.多肽链的折叠发生在蛋白质合成结束以后才开始。 ( )11.人工合成多肽的方向也是从N端到C端。

( )12.核糖体活性中心的A位和P位均在大亚基上。 ( )13.蛋白质合成过程中所需的能量都由ATP直接供给。

( )14.每个氨酰-tRNA进入核糖体的A位都需要延长因子的参与,并消耗一分子GTP。 ( )15.每种氨基酸只能有一种特定的tRNA与之对应。 ( )16.密码子与反密码子都是由AGCU 4种碱基构成的。 ( )17.泛素是一种热激蛋白。

( )18.原核细胞新生肽链N端第一个残基为fMet;真核细胞新生肽链N端为Met。 ( )19.蛋白质合成过程中,肽基转移酶起转肽作用核水解肽链作用。 ( )20.色氨酸操纵子中存在衰减子,故此操纵系统有细调节功能。 (六)问答题 1.什么m7GTP 能够抑制真核细胞的蛋白质合成,但不抑制原核细胞的蛋白质合成?相反人工合成的SD序列能够抑制原核细胞的蛋白质合成,但不抑制真核细胞的蛋白质合成? 2.遗传密码如何编码?有哪些基本特性?

3.简述tRNA在蛋白质的生物合成中是如何起作用的?

4.mRNA遗传密码排列顺序翻译成多肽链的氨基酸排列顺序,保证准确翻译的关键是什么?

120

5.述真核生物反式作用因子与DNA靶区和RNA聚合酶相互作用的基本方式。 6.癌基因异常激活有哪些方式? 7.简述抑癌基因与癌变的关系。 参考答案:

(一) 名词解释 1.密码子(codon):存在于信使RNA中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位。密码子确定哪一种氨基酸叁入蛋白质多肽链的特定位置上;共有64个密码子,其中61个是氨基酸的密码,3个是作为终止密码子。 2.同义密码子(synonym codon):为同一种氨基酸编码的几个密码子之一,例如密码子UUU和UUC 二者都为苯丙氨酸编码。 3.反密码子(anticodon):在转移RNA反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA的特殊密码上。 4.变偶假说(Wobble hypothesis):克里克为解释tRNA分子如何去识别不止一个密码子而提出的一种假说。据此假说,反密码子的前两个碱基(3ˊ端)按照碱基配对的一般规律与密码子的前两个(5ˊ端)碱基配对,然而tRNA反密码子中的第三个碱基,在与密码子上3ˊ端的碱基形成氢键时,则可有某种程度的变动,使其有可能与几种不同的碱基配对。

5.移码突变(frame-shift mutation):一种突变,其结果为导致核酸的核苷酸顺序之间的正常关系发生改变。移码突变是由删去或插入一个核苷酸的点突变构成的,在这种情况下,突变点以前的密码子并不改变,并将决定正确的氨基酸顺序;但突变点以后的所有密码子都将改变。且将决定错误的氨基酸顺序。 6.氨基酸同功受体(isoacceptor):每一个氨基酸可以有多过一个tRNA作为运载工具,这些tRNA称为该氨基酸同功受体。 7.反义RNA(antisense RNA):具有互补序列的RNA。反义RNA可以通过互补序列与特定的mRNA相结合,结合位置包括mRNA 结合核糖体的序列(SD序列)和起始密码子AUG,从而抑制mRNA 的翻译。又称干扰mRNA 的互补RNA。

8.信号肽(signal peptide): 信号肽假说认为,编码分泌蛋白的mRNA在翻译时首先合成的是N 末端带有疏水氨基酸残基的信号肽,它被内质网膜上的受体识别并与之相结合。信号肽经由膜中蛋白质形成的孔道到达内质网内腔,随即被位于腔表面的信号肽酶水解,由于它的引导,新生的多肽就能够通过内质网膜进入腔内,最终被分泌到胞外。翻译结束后,核糖体亚基解聚、孔道消失,内质网膜又恢复原先的脂双层结构。 9. 简并密码(degenerate codon):或称同义密码子(synonym codon),为同一种氨基酸编码几个密码子之一,例如密码子UUU和UUC二者都为苯丙氨酸编码。

10.核糖体(ribosome): 核糖体是很多亚细胞核蛋白颗粒中的一个,由大约等量的RNA 和蛋白质所组成,是细胞内蛋白质合成的场所。每个核糖核蛋白体在外形上近似圆形,直径约为20nm。由两个不相同的亚基组成,这两个亚基通过镁离子和其它非共价键地结合在一起。已证实有四类核糖核蛋白体(细菌、植物、动物和线粒体)它们以其单体的、亚单位的和核糖核蛋白体RNA的沉降系数相区别。细菌核蛋白体含有约50个不同的蛋白质分子和3个不同的RNA分子。小的亚单位含有约20个蛋白质分子和1个RNA分子。大的亚单位含有约30个蛋白质分子和2个RNA 分子。核蛋白体有两个结合转移RNA的部位(部位和部位),并且也能附上信使RNA,简写为Rb。

11.多核糖体(polysome):在信使核糖核酸链上附着两个或更多的核糖体。 12.氨酰基部位(aminoacyl site):在蛋白质合成过程中进入的氨酰-tRNA结合在核蛋白体上的部位。

121

13.肽酰基部位(peptidy site):指在蛋白质合成过程中,当下一个氨酰基转移RNA接到核糖核蛋白体的氨基部位时,肽酰tRNA所在核蛋白体上的结合点。 14.肽基转移酶(peptidyl transferase):蛋白质合成中的一种酶。它能催化正在增长的多肽链与下一个氨基酸之间形成肽键。在细菌中此酶是50S核糖核蛋白体亚单位中的蛋白质之一。

15.氨酰-tRNA合成酶(amino acy-tRNA synthetase):催化氨基酸激活的偶联反应的酶,先是一种氨基酸连接到AMP生成一种氨酰腺苷酸,然后连接到转移RNA分子生成氨酰-tRNA分子。

16.蛋白质折叠(protein folding):蛋白质的三维构象,称为蛋白质的折叠。是由蛋白质多肽链的氨基酸顺序所决定的。不同的蛋白质有不同的氨基酸顺序,也就各自按照一定的方式折叠而成该蛋白质独有的天然构象。这个蛋白质折叠是在自然条件下自发进行的,在生物体内条件下,它是在热力学上最稳定的形式。多肽链在核糖体上一面延长,一面自发地折叠成其本身独有的构象。当肽链终止延长并从核糖体上脱落时,它也就折叠成天然的三维结构。

17.核蛋白体循环(polyribosome):是指已活化的氨基酸由tRNA转运到核蛋白体合成多肽链的过程。

18.锌指(zine finger):是调控转录的蛋白质因子中与DNA结合的一种基元,它由大约30个氨基酸残基的肽段与锌螯合形成的指形结构,锌以4个配位键与肽链的Cys或His残基结合,指形突起的肽段含12-13个氨基酸残基,指形突起嵌入DNA的大沟中,由指形突起或其附近的某些氨基酸侧链与DNA的碱基结合而实现蛋白质与DNA的结合。 19.亮氨酸拉链(leucine zipper):这是真核生物转录调控蛋白与蛋白质及与DNA结合的基元之一。两个蛋白质分子近处C 端肽段各自形成两性α-螺旋,α-螺旋的肽段每隔7个氨基酸残基出现一个亮氨酸残基,两个α-螺旋 的疏水面互相靠拢,两排亮氨酸残基疏水侧链排列成拉链状形成疏水键使蛋白质结合成二聚体,α-螺旋的上游富含碱性氨基酸(Arg 、Lys)肽段借Arg 、Lys 侧链基团与DNA的碱基互相结合而实现蛋白质与DNA的特异结合。

20.顺式作用元件(cis-acting element):真核生物DNA的转录启动子和增强子等序列,合称顺式作用元件。

21.反式作用因子(trans-acting factor):调控转录的各种蛋白质因子总称反式作用因子。

22.螺旋—环—螺旋(helix-loop-helix):这种蛋白质基元由两个两性α—螺旋通过一个肽段连结形成螺旋—环—螺旋结构,两个蛋白质通过两性螺旋的疏水面互相结合,与DNA的结合则依靠此基元附近的碱性氨基酸侧链基团与DNA的碱基结合而实现。 (二) 英文缩写符号

1.IF(initiation factor):原核生物蛋白质合成的起始因子。 2.EF(elongation factor):原核生物蛋白质合成的延伸因子。 3.RF(release factor):原核生物蛋白质合成的终止因子(释放因子)。 4.hnRNA(heterogeneous nuclear RNA):核不均一RNA。

5.fMet-tRNAf :原核生物蛋白质合成的第一个氨酰基转移RNA。 6.Met-tRNAi :真核生物蛋白质合成的第一个氨酰基转移RNA。 (三) 填空题

1.mRNA;tRNA;核糖体

2.N端→C端;5ˊ端→3ˊ端 3.P位点;A位点。

122

4.AUG;GUG;UAA;UAG; UGA 5.嘌呤;嘧啶

6.3;3;3;2;3;1 7.甲酰甲硫氨酸

8.没有经历后加工,如剪切 9.分子伴侣 10. ATPase 11.核酸内切酶 12.GCU;GCC

13.缺乏帽子结构,无法识别起始密码子

14.DNA;转录;DNA的遗传信息;hnRNA;一条多肽链 15.64;61;AUG;UAA;UAG;UGA 16.氨基酸;tRNA

17. fMet-tRNA ;Met-tRNA

18.氨酰基;肽酰基;大小亚基的接触面上 19.多核糖体

20.肽键的形成;肽链从tRNA上分离出来 21.小亚基;16SRNA

22.移位酶;催化核糖体沿mRNA移动; GTP 23.开放的阅读框架;7 24.转录;翻译 25.简并性;通用性 26.ATP;羧

27.70S核蛋白体;.fMet-tRNAfMet 28.80S核蛋白体;Met-tRNAiMet 29.转肽、移位

30.剪裁;天然构象的形成 31.30S;读码错误 32.50S;肽基转移

33.分解代谢基因活化蛋白;CAP-cAMP复合物 34.锌指、亮氨酸拉链 35.别乳糖、色氨酸 36.信号肽的水解切除 37.P21蛋白;PP60蛋白 (四) 选择题

1.A:甘氨酸是20种基本氨基酸中唯一的一个不具旋光性的氨基酸,甘氨酰- tRNA合成酶很容易将它与其他的氨基酸分开,不会出现误载的情况。 2.A:读码顺序均为5ˊ→3ˊ。

3.C:肽链延伸包括进位、成肽、移位三个步骤,进位、移位分别消耗一分子GTP。 4.C:该开放的阅读框架由20×3(起始密码子)+3(终止密码子)=66个核苷酸组成。 5.B:TRNA分子的3ˊ端的碱基顺序是—CCA,“活化”的氨基酸的羧基连接到3ˊ末端腺苷的核糖3ˊ-OH上,形成氨酰-tRNA。 6.D:

7.A:4种氨基酸中Arg的同义密码子最多,为6个,因此碱基突变对它的影响最少。

123

8.C:根据摆动学说,如果反密码子的第一个碱基为次黄嘌呤时,它可以与U、C、或A配对。

9.D:核糖体是储藏核糖核酸的细胞器。 10.C: 11.C: 12.A:

13.D:活化时消耗一分子ATP中两个高能磷酸键;延伸时消耗两分子GTP。

14.B:第一个氨基酸的氨基和第二个氨基酸的羧基形成肽键,所以蛋白质合成方向是N→C。 15.A:

16.D:蛋白质终止过程是终止因子RF1和RF2识别mRNA上的终止密码子。 17.A:真核生物DNA的转录启动子和增强子等序列,合称顺式作用元件。 18.D:调控转录的各种蛋白质因子总称反式作用因子。 19.D: 20.C:

(五) 是非判断题

1.错:真核细胞mRNA的5ˊ端无SD序列,因此在原核细胞翻译系统中,不能有效地翻译。

2.对:核糖体蛋白质可在核糖外参与复制、转录、后加工等过程。

3.错:核糖体需要解离成大小两个亚基才能够与mRNA结合,启动翻译。

4.错:某些生物缺乏谷氨冬酰胺-tRNA合成酶或天冬酰胺酰-tRNA合成酶,相应的Gln-tRNAAsn-tRNAGlnAsn的合成先是由谷氨酰-tRNA合成酶或天冬氨酰-tRNA合成酶催化形误载的Glu-tRNAGlnAsp-tRNAAsn,再经过酰胺化反应生成Gln-tRNA或Asn-tRNAAsn。 5.对:EF-Tu的GTPase 活性越高,允许密码子和反密码子校对的时间就越短,因而忠实性就降低,而翻译的速度反而提高。 6.错:起始tRNA进入P位点。

7.错: tRNA是一个tRNA分子上决定所携带氨基酸性质的核苷酸序列和阻止其它氨基酸被携带的核苷酸序列。不同种的tRNA的个性是不同的。 8.错:从DNA的核苷酸序列并不能始终根据三联体密码推断出某一蛋白质的氨基酸序列,这是因为某些蛋白质的翻译经历再次程序化的解码,而且大多数真核细胞的蛋白质基因为断裂基因。

9.错:越来越多的证据表明rRNA在翻译中,决不是仅仅充当组装核糖体的结构骨架作用,它能主动参与蛋白质的合成,如作为ribozyme发挥作用。 10.错:多数多肽链的折叠与肽链延伸反应同时进行。

11.错:人工合成多肽的方向正好与体内的多肽链延伸的方向相反,是从C端到N端。 12.错:核糖体活性中心的A位和P位均在大亚基上。 13.错:蛋白质合成过程中所需的能量都由ATP直接供给。

14.对:每个氨酰-tRNA进入核糖体的A位都需要延长因子的参与,并消耗一分子GTP。 15.错:每种氨基酸只能有一种特定的tRNA与之对应。 16.错:反密码子中含有胸腺嘧啶碱基(T)。

17.对:泛素是一种热激蛋白,它在温度升高的情况下表达量提高,有利于机体清除受热变性的蛋白质。

18.对: 原核细胞新生肽链N端第一个残基为fMet;真核细胞新生肽链N端为Met。 19.对:蛋白质合成过程中,肽基转移酶起转肽作用核水解肽链作用。

124

20.对。

(六)问答题(解题要点)

1.答:m7GTP之所以能够抑制真核细胞的蛋白质合成是因为它是真核细胞mRNA的5ˊ帽子结构的类似物,能够竞争性的结合真核细胞蛋白质合成起始阶段所必需的帽子结合蛋白(一种特殊的起始因子)原核细胞mRNA的5ˊ端没有帽子结构,因此m7GTP不会影响到它翻译的起始。 SD序列是存在于原核细胞mRNA的5ˊ端非编码区的一段富含嘌呤碱基的序列,它能够与核糖体小 亚基上的16SrRNA的3ˊ端的反SD序列通过互补结合,这种结合对原核细胞翻译过程中起始密码 子的识别非常重要,将人工合成的SD序列加到翻译体系中,必然会干扰到mRNA所固有的SD序 列与16SrRNA的反SD序列的相互作用,从而竞争性抑制原核细胞蛋白质合成的起始。

2.答:mRNA上每3个相邻的核苷酸编成一个密码子,代表某种氨基酸或肽链合成的起始或终止信(4种核苷酸共组成64个密码子)。其特点有:①方向性:编码方向是5ˊ→3ˊ;②无标点性:密码子连续排列,既无间隔又无重叠;③简并性:除了Met和Trp各只有一个密码子之外,其余每种氨基酸都有2—6个密码子;④通用性:不同生物共用一套密码;⑤摆动性:在密码子与反密码子相互识别的过程中密码子的第一个核苷酸起决定性作用,而第二个、尤其是第三个核苷酸能够在一定范围内进行变动。

3.答:在蛋白质合成中,tRNA起着运载氨基酸的作用,将氨基酸按照mRNA链上的密码子所决定的氨基酸顺序搬运到蛋白质合成的场所——核糖体的特定部位。tRNA是多肽链和mRNA之间的重要转换器。①其3ˊ端接受活化的氨基酸,形成氨酰-tRNA②tRNA上反密码子识别mRNA链上的密码子 ③ 合成多肽链时,多肽链通过tRNA暂时结合在核糖体的正确位置上,直至合成终止后多肽链才从核糖体上脱下。

4.答:保证翻译准确性的关键有二:一是氨基酸与tRNA的特异结合,依靠氨酰- tRNA合成酶的特异识别作用实现;二是密码子与反密码子的特异结合,依靠互补配对结合实现,也有赖于核蛋白体的构象正常而实现正常的装配功能。

5.答:这些基本方式主要有锌指、亮氨酸拉链、螺旋—环—螺旋基元,参看名词解释的18、19、22答案。

6.答:癌基因异常激活的方式有①癌基因的点突变;②癌基因的扩增;③癌基因或其增强子甲基化程度降低;④增强子等序列的插入对癌基因转录的促进;⑤癌基因易位。 7.答:抑癌基因突变失活、缺失或抑癌基因产物失活均可引起细胞癌变。

四川大学生物化学物质代谢与调节部分考试题

一、选择题

1、糖酵解中,下列哪一个催化的反应不是限速反应?( )

A、丙酮酸激酶 B、磷酸果糖激酶 C、己糖激酶 D、磷酸丙糖异构酶

2、磷酸化酶通过接受或脱去磷酸基而调节活性,因此它属于:( )

A、别(变)构调节酶 B、共价调节酶 C、诱导酶 D、同工酶

3、下列与能量代谢有关的途径不在线粒体内进行的是:( )

A、三羧酸循环 B、脂肪酸β氧化 C、氧化磷酸化 D、糖酵解作用

125

4、关于共价修饰调节酶,下列哪种说法是错误的?( )

A、这类酶一般存在活性和无活性两种形式 B、酶的这两种形式通过酶促的共价修饰相互转变 C、伴有级联放大作用 D、是高等生物独有的代谢调节方式

5、阻遏蛋白结合的位点是:( )

A、调节基因 B、启动因子 C、操纵基因 D、结构基因

6、下面哪一项代谢是在细胞质内进行的:( )

A、脂肪酸的β-氧化 B、氧化磷酸化 C、脂肪酸的合成 D、TCA

7、在乳糖操纵子模型中,操纵基因专门控制 是否转录与翻译。( ) A、结构基因 B、调节基因 C、起动因子 D、阻遏蛋白

二、是非题(在题后括号内打√或×)

1、共价调节是指酶与底物形成一个反应活性很高的共价中间物。( )

2、在酶的别构调节和共价修饰中,常伴有酶分子亚基的解聚和缔合,这种可逆的解聚/缔合也是肌体内酶活性调节的重要方式。( ) 3、细胞的区域化在代谢调节上的作用,除了把不同的酶系统和代谢物分隔在特定的区间,还通过膜上的运载系统调节代谢物、辅酶和金属离子的浓度。( ) 4、操纵基因又称操纵子,如同起动基因又称启动子一样。( )

5、能荷水平之所以影响一些代谢反应,仅仅因为ATP是一些酶的产物或底物。( )

三、问答题

1、为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路?哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节?为什么? 2、举例说明核苷酸及其衍生物在代谢中的作用。 3、试比较变构调节与化学修饰调节作用的异同?

4、分别写出谷氨酸在体内①氧化分解生成CO2和H2O②生成糖③生成甘油三酯的主要历程,•注明催化反应的酶,并计算分解时所产生的ATP数目。

5.何谓操纵子学说?试以大肠杆菌乳糖操纵子为例说明酶合成的诱导和阻遏。 6.简述能荷调节对代谢的影响及其生物学意义。

四、名词解释

反馈抑制 共价修饰 第二信使 操纵子学说 限速酶(标兵酶) 级联放大系统 操纵子

第四部分 研究生考前补习班基础生化复习题

126

(2005年12月)

核酸部分

1. 举例说明核酸是遗传信息的载体 2. 简述DNA的种类和分布 3. 简述RNA的种类和分布

4. DNA与RNA分子组成有什么差别? 5. DNA分子大小与生物进化有什么关系? 6. 什么是稀有碱基?如何产生的? 7. 简述核苷酸的生理功能

8. 简述RNA与DNA的分离提取方法 9. 什么是DNA的增色效应和减色效应? 10 在温和碱性条件下为什么DNA比RNA稳定? 11什么是Tm值?与DNA分子组成有什么关系? 12什么是退火,DNA分子在什么温度下退火最好? 13,DNA变性后其结构及理化特性有什么重要变化? 14.什么是分子杂交?举例说明

15为什么说DNA及RNA是两性分子? 16 什么是Chargaff定则,有什么意义? 17什么是DNA的一级结构?

18 Watson—Crick DNA分子模型的特点是什么? 19 稳定DNA双螺旋结构的力是什么?

20 B型DNA双螺旋结构模型的建立有什么生物学意义? 21什么是左旋DNA

22 什么是超螺旋结构,正负超螺旋结构有什么不同? 23.什么是拓扑异构酶?有什么生理功能? 24.RNA分子结构的主要特点是什么? 25简述RNA的二,三级结构

26真核生物与原核生物的rRNA有什么差别? 27真核与原核生物的mRNA有什么差别? 28简述核酸的生物学功能

29简述Ti及TMV病毒的结构特点 30计算题

电子传递链与氧化磷酸化部分

1. 什么是生物氧化?有几种方式?

2. 什么是呼吸链?由那些成员组成?简述其结构特点及功能 3. NADH和FANDH2的氢通过呼吸链时为什么能产生ATP

4. 什么是氧化磷酸化?什么是底物水平磷酸化,他们有什么区别?5. 生物体内常见的高能分子有哪些?

6. 磷酸肌酸及磷酸精氨酸有什么生理功能? 7. 细胞色素b和c与a有什么不同? 8. NADH是怎样进入线粒体的?

127

9. ATP是怎样进入线粒体的?

什么是末端氧化酶?植物中有那些末端氧化酶?

磷氧比(p/o)表示什么含义?为什么苹果酸和琥珀酸的磷氧比不同? 呼吸链受哪些阻抑剂阻抑?

一克分子葡萄糖在细胞中完全氧化为CO2和H2O时能量利用率是多少? 呼吸链的氧化磷酸化效率有多高? 简述化学渗透学说的机理

什么是解联剂,生理作用是什么? 什么是能荷?能荷与代谢有什么关系?

何谓氧化还原电势?简述它与标准自由能变化的关系

脂类代谢部分

植物体中甘油是怎样生成的?

乙酰CoA羧化酶由哪些成分组成? 乙酰CoA是怎样由线粒体中运出来的? 什么物质可以抑制乙酰CoA羧化酶? 脂肪酸合成酶包括哪些成员? 什么是ACP?有什么生物功能?

简述脂肪酸的从头合成途径(非线粒体途径)

脂肪酸合成中的还原剂是什么?来自何处?NADH能否参与脂肪酸合成? 动物细胞溶质中为什么不能合成16碳以上的脂肪酸? 18碳脂肪酸的合成在动物、植物中有什么差别? 硫激酶和的功能有什么不同?

三酰甘油是怎样通过线粒体膜的? 脂酰-ACP是怎样转变为脂先CoA的? 卵磷脂是怎样合成的?

什么是β-氧化作用?在细胞什么部位进行?

脂酰ACP硫脂酶与β-酮脂酰硫解酶的作用有什么差别? 简述β-氧化作用与脂肪酶合成途径的差异? 棕榈酸(15碳)进行β-氧化时利用率有多少? 什么是乙酸循环?有什么生理作用? 什么是α-及β-氧化作用?

什么是生物膜?膜中有哪些成分? 什么是单位膜?

简述膜的流动镶嵌模型 生物膜有哪些重要的功能?

含氮化合物代谢(核苷酸代谢部分)

嘌呤与嘧啶由哪些化合物合成?

什么是核苷酸的“从头合成途径”?什么是补救途径? 简述IMP合成过程要点 IMP怎样改变为AMP及CMP

128

甲川四氢叶酸在核苷酸合成中的作用是什么? 简述嘧啶核苷酸合成途径?

尿核酸怎样改变为胞苷酸和脱氧胸嘧啶? 磷酸核苷怎样改变为三磷酸核苷?

脱氧核苷酸是怎样合成的?简述水解核酸的酶的分类? 在不同进化水平的动物中嘌呤分解的最终产物是什么? 什么是限制性核酸内切酶? 熟悉各核苷酸相互改变途径?

核苷酸及其衍生物在代谢中由什么重要性?

核酸的生物合成

什么是中心法则?什么是遗传信息?

什么是半保留复制?如何证明?有什么生物学意义? 引物酶与经典的RNA聚合酶有什么不同? DNA聚合酶I有什么功能?受什么抑制?

DNA聚合酶2由哪些亚基组成,各亚基的功能是什么? DNA聚合酶1.2.3的特点和功能有什么不同和相同? 原核与真核DNA连接酶的作用机理有何相同和差异?

DNA生物合成酶需要哪些酶及因子参加?它们的功能是什么? 什么是引物体?含有什么成分?

什么是复制,领头链,随后链,岗其片断。半不连续复制? 简述DNA合成过程

什么是逆转录作用?逆转录酶有什么特性?什么是前病毒? 逆转录受什么因子抑制?

什么是突变?DNA突变有哪几种形式? 亚硝酸,硫酸二甲酯为何能引起突变? 简述暗复活作用的机理 简述DNA复制后修复作用? 什么是SOS修复?

什么是基因工程?简述基因工程的步骤 基因工程的生物学意义是什么?

什么是不对称转录?什么是有意义链及其反意义链? 什么是启动子?有什么特点?

原核生物RNA聚合酶含有哪些亚基,各亚基功能是什么? 简述RNA的合成步骤 什么是转录单位?

原核生物中,抑制RNA生物合成的抑制剂是什么? 什么是转录单位?

真核生物RNA聚合酶有哪几种?功能有什么差异?受什么抑制?真核hnRNA是怎样转变为mRNA的? rRNA是怎样产生的? TRNA是怎样产生的? RNA的复制特点是什么?

129

计算题

代谢调控

什么是标兵酶?举例说明

什么是细胞区域化?其生理生化意义是什么? 什么是诱导酶?举例说明

什么是酶合成的负调控及其正调控

生物体内糖、脂肪及蛋白质三类物质在代谢上的相互关系如何? 生物体内的代谢调节在哪几种不同的水平上进行? 物质代谢调节的意义与方式是什么?

什么是酶合成的诱导和租抑?什么是乳糖操作子模型? 何谓酶的共价修饰,酶的级联系统

何谓反馈抑制?反馈调节的意义是什么?

什么是顺序反馈抑制?协同反馈抑制?累积反馈抑制?前馈激活? 生物体内能荷是怎样对代谢进行调节的?

第五部分 《生物化学》考试大纲(150分)

课程内容、考核要求和比例 第一章 蛋白质化学 第一节 概述

1. 了解蛋白质的生物学意义(功能等) 2. 了解蛋白质的元素组成 第二节 氨基酸

1. 掌握组成蛋白质的氨基酸种类

2. 熟悉氨基酸的分类和一些重要的理化性质(紫外吸收、两性解离及等电点、 茚三酮反应、Sanger反应、Edman反应、荧光胺反应) 第三节 蛋白质的结构 1. 熟悉肽和肽键的结构

2. 掌握蛋白质的分子结构(一级、二级、三级和四级)

3. 掌握蛋白质结构与功能的关系(一级结构与功能的关系、空间结构与功能的关系) 4. 掌握蛋白质的重要理化性质(两性电离及等电点、胶体性质、沉淀反应、变性与复性、紫外吸收、颜色反应)

5. 了解蛋白质分子量测定的常用方法 第二章 核酸的化学 第一节 概述

1. 了解核酸的概念及重要性 2. 熟悉核酸的种类、分布及功能

3. 掌握核酸的化学组成(戊糖、含氮碱基、核苷、核苷酸和核苷酸的连接方式) 第二节 DNA的结构

1. 熟悉DNA的一级结构

2. 掌握DNA二级结构的双螺旋结构模型要点、碱基配对规律 3. 了解DNA的三级结构 第三节 RNA的结构

130

1.了解RNA的类型和结构特点

2. 掌握tRNA、mRNA和rRNA的结构和功能 第四节 核酸的性质

1. 熟悉核酸的一般性质、紫外吸收及稳定性 2. 掌握核酸的变性、复性及分子杂交 第五节 DNA和基因组(了解) 第三章 酶

第一节 酶的概述

1. 熟悉酶的催化作用及特点

2. 掌握酶的化学本质和化学组成(酶蛋白与辅助因子、酶的活性中心与必需基团、酶原的激活、同工酶与变构酶) 3. 了解酶的分类及命名 第二节 酶的催化作用机理

1. 掌握酶的专一性(结构专一性、 立体异构专一性) 2. 了解酶促反应的机理(活化能、中间产物学说) 3. 熟悉使酶具有高催化效率的因素 第三节 酶促反应动力学

1. 掌握酶活力测定的基本原则,酶活力单位的概念

2. 掌握底物浓度对酶促反应速度的影响(米氏方程、米氏常数及其意义) 3. 掌握酶浓度、pH值、温度、激活剂对酶促反应速度的影响

4. 掌握抑制剂对酶促反应速度的影响(不可逆抑制、竞争性抑制、非竞争性抑制) 第四节 酶活性调节

1. 掌握别构效应调节(变构酶) 2. 掌握共价修饰调节 3. 掌握酶原的激活

第五节 酶的分离提纯(了解) 第四章 维生素与辅酶

1. 了解维生素的概念和种类

2. 掌握水溶性维生素与辅酶的关系(维生素B1-3 、维生素B5-7 、叶酸、硫辛酸、维生素C) 第五章 糖代谢

第一节 多糖和低聚糖的酶促降解 1. 了解蔗糖的水解

2. 了解淀粉的水解和磷酸解 第二节 糖的分解代谢

1. 掌握糖无氧酵解的基本反应过程、限速酶、ATP的生成、生理意义及调节

2. 掌握糖有氧分解的基本反应过程、限速酶、ATP的生成、生理意义及调节(三羧酸循环)

3. 掌握乙醛酸循环的化学历程、特异酶及生理意义 4. 熟悉磷酸戊糖途径的反应过程,掌握其生理意义 第三节 糖的合成代谢 1. 熟悉蔗糖和淀粉的合成 2. 了解糖原的异生作用 第六章 生物氧化

131

第一节 生物氧化的概念和特点(了解) 第二节 电子传递过程和氧化呼吸链

1. 熟悉两条呼吸链(NADH和FADH2)的主要组成成份以及电子传递顺序 2. 掌握三类电子传递抑制剂作用的部位 第三节 氧化磷酸化作用

1. 掌握氧化磷酸化的概念、P/O比概念、氧化与磷酸化偶联部位(即ATP形成部位)及其影响因素(解偶联剂)

2. 了解线粒体外NADH转运进入线粒体的机制 3. 了解氧化磷酸化的机制(化学渗透学说)

4. 熟悉ATP的生理功能(高能磷酸键、高能磷酸化合物) 第七章 脂类的代谢 第一节 脂类的酶促水解 1. 了解脂类的种类和功能

2. 了解甘油三酯(脂肪)的水解 第二节 脂肪酸和甘油的分解代谢 1. 熟悉甘油代谢

2. 掌握脂肪酸的氧化(脂肪酸活化、转运和β-氧化过程) 3. 掌握酮体代谢途径(酮体的生成和利用) 第三节 脂肪的合成代谢

1. 掌握脂肪酸的从头合成(合成的原料、关键酶) 2. 了解甘油-α-磷酸和甘油三酯的合成 3. 熟悉脂代谢与糖代谢的关系 第四节 磷脂代谢

1. 了解甘油磷脂的水解

2. 熟悉磷脂的合成(磷脂酰乙醇胺、磷脂酰胆碱) 第八章 氨基酸代谢

第一节 蛋白质的酶促降解(了解) 第二节 氨基酸分解代谢

1. 掌握脱氨基作用(氧化脱氨基、转氨基、联合脱氨基及非氧化脱氨基4种方式) 2. 掌握脱羧基作用

3. 熟悉氨的去向(尿素循环、酰胺的合成) 4. 了解α-酮酸的代谢 第三节 氨基酸合成代谢

1. 了解一碳单位的概念、来源、转变和功能 2. 掌握氨基酸合成的六大类型(合成的起始物) 第九章 核酸代谢

第一节 DNA的生物合成——复制

1. 掌握遗传信息传递的中心法则及其补充

2. 掌握DNA的半保留复制(复制的原料、模板、复制起点和复制单位、参与复制的酶类和因子)

3. 熟悉DNA复制的基本过程(DNA的半不连续复制、冈崎片段) 4. 熟悉真核生物DNA的复制

5. 掌握反转录过程(反转录酶、反转录的生物学意义) 6. 掌握DNA的损伤与修复(光修复、暗修复)

132

第二节 RNA的生物合成——转录

1. 掌握转录的原料、模板、酶及转录的基本过程

2. 熟悉转录后RNA的加工(原核生物和真核生物mRNA、tRNA及rRNA的加工) 3. 了解RNA复制(噬菌体QβRNA的复制,病毒RNA复制的主要方式) 第五节 核苷酸代谢

1. 了解核酸的酶促降解(核酸外切酶、核酸内切酶、限制性内切酶)及碱基的分解 2. 了解核苷酸的从头合成和补救途径 第十章 蛋白质的生物合成——翻译 第一节 蛋白质合成体系的组合 1. 掌握遗传密码的概念及特点

2. 掌握各种RNA在蛋白质生物合成中的作用(mRNA—模板、tRNA—携带氨基酸、rRNA—构成核糖体)

3. 熟悉核糖体的组成、结构和功能(蛋白质合成的场所) 第二节 蛋白质生物合成的过程

1. 熟悉蛋白质合成的基本过程(氨基酸的活化与转运;肽链的起始;肽链的延长——进位、转肽、脱落、移位;肽链的终止和释放) 2. 熟悉翻译后加工过程的方式 第三节 基因工程

1. 掌握基因工程的相关概念(克隆、DNA重组技术、工具酶、目的基因、基因载体) 2. 熟悉重组DNA技术的基本原理及过程(目的基因的获取、克隆载体的选择和构建、外源基因与载体的连接、重组DNA的导入、重组体的筛选、克隆基因的表达) 3. 了解基因工程广阔的应用前景 第十一章 代谢调节

第一节 物质代谢的相互关系

熟悉糖、脂、蛋白质代谢之间的相互关系 第二节 酶水平的调节

1. 熟悉酶合成的调节(乳糖操纵子、色氨酸操纵子) 2. 掌握酶活性调节(变构调节、共价修饰) 3. 细胞内酶的隔离分布

第六部分 考试题型

1.填空题 20% 2.选择题 20% 3.名词解释 15% 4.计算问答题 50%

133

因篇幅问题不能全部显示,请点此查看更多更全内容

Top