DistributedEmbeddedSystems
InstituteforTechnical
Informatics
GrazUniversityofTechnology
A-8010Graz,Austria
AllanTengg
tengg@iti.tugraz.at
InstituteforTechnical
Informatics
GrazUniversityofTechnology
A-8010Graz,Austria
AndreasKlausner
klausner@iti.tugraz.at
b.rinner@computer.org
InstituteofNetworkedandEmbeddedSystemsKlagenfurtUniversityA-9020Klagenfurt,Austria
BernhardRinner
CategoriesandSubjectDescriptors:D.2.11[SoftwareArchitectures]:Domain-specificarchitecturesGeneralTerms:Algorithms
Keywords:Geneticalgorithms,taskallocationproblem
1.SUMMARY
ThemainideaofourI-SENSEresearchproject[1]istoprovideagenericarchitecturewhichsupportsonlinedatafusiononadistributedembeddedsystem.Toaccomplishhighflexibility,wedecidedthatthefunctionaldescriptionofadatafusionsystem,thesocalledfusionmodel,shouldbedefinedindependentlyofthepresenthardwareconfigu-ration,thesocalledhardwaremodel.Itistheobjective,toautomaticallyfindavalidmappingofthefusionmodeltothishardwaremodel.CurrentlynotmanypublicationscanbefoundthatreportthesuccessfulutilizationofGPtosolvesuchtaskallocationproblems.Herewepresentourtaskal-locationmethodthatutilizesGPtofindasuitablesolutioninanadequatetimeforthisoptimizationproblemknowntobeNP-complete.Toimprovetheperformanceofthealgo-rithmsignificantlyforourproblemdomain,weaddedafewheuristicswhichareoutlinedinthefollowing.
Thefusionmodelconsistsbasicallyofasetofcommu-nicatingtaskswhichmayberepresentedasataskgraphG=(N,E).Itisassumedtobeaweighteddirectedacyclicgraph,consistingofnodesN=(n1,n2,...,nm)whichrepre-sentthefusiontasksandtheedgesE=(e12,e13,...,enm)thedataflowbetweenthosetasks.Eachnodehassomeproper-ties,describingthehardwarerequirementsofatask.Everyedgeindicatestherequiredcommunicationbandwidthbe-tweentwotasks.
Thehardwaremodeldescribestheheterogenousdistributedembeddedsystem,consistingofdifferentprocessorswithdifferentpropertiessuchascoretype,clockfrequencyandavailablememory,wherethefusionapplicationshouldrunon.EachhardwarenodehasatleastonegeneralpurposeCPUandoptionallysomedigitalsignalprocessors(DSPs)coupledstronglyviaPCIandI/Oportstoconnectsensors.Ethernetisusedtointerconnectthehardwarenodes.
Thetraditionalgeneticalgorithmsuffersamajordraw-backifitisappliedtoourproblem:Thepercentageofvalidcombinationsisusuallyverysmallcomparedtoallpossible
Copyrightisheldbytheauthor/owner(s).
GECCO’07,July7–11,2007,London,England,UnitedKingdom.ACM978-1-59593-697-4/07/0007.
taskallocations.Whencreatingapurerandominitialpopu-lation,itishighlylikelythatthereisnotasinglevalidchro-mosomeinthepopulation.AsproposedbyJensGottlieb[2],apenaltyinthefitnessscoreforinvalidchromosomeshasproventobeagoodapproachforsuchsituations.
Wefoundfurther,thatthestraightforwardimplementa-tionoftheGAwithpenaltiesperformsworsewithincreas-ingproblemsize,ifthereisnocorrespondenceofthegenesandgeneticoperationsintherealworldproblem.Withoutprecautionneithertheorderofthegenes,northepointofintersectioninthecrossoveroperatorhasameaninginthetaskallocationproblem.Thisleadstoaunrestrictedsearchintheentiresolutionspacewiththedisadvantagethatmanyinvalidallocationshavetobecheckedandruledout.
Wepropose,thattightlycoupledtasksshouldbemappedonadjacentgenesinthechromosome.Nowthegeneticcrossoveroperatorhasarealworldmeaning:Ratherthanindividualtaskswithoutrelationamongeachother,entirecoupledclustersoftasksareexchangedbythecrossoverop-eratorwhichleadstoabetterperformance.Iftheclusteringideaisintroducedtotheinitialpopulationaswell,afurtherenhancementcanbeaccomplished.Insteadofplacingthetasksintheordertheyappearinthefusionmodel,taskswithhighcommunicationrequirementareplacedfirstatarandomprocessortogetherwiththeirheavycoupledtasks.Thisresultsinarelativelyfitinitialpopulationandthereforefastersearch,comparedtoapurerandominitialpopulation(cp.table1).
TasksCPUsComplexityNormalEnhanced156easy2.831.842610medium13.936.792014hard81.2024.002614hard58.4038.932012veryhard203.8625.79Table1:Iterationstofindaoptimalconfiguration
2.REFERENCES
[1]A.Klausner,B.Rinner,andA.Tengg.I-SENSE:Intelligent
embeddedmulti-sensorfusion.InProceedingsofthe4thIEEEInternationalWorkshoponIntelligentSolutionsinEmbeddedSystems(WISES),Austria,June2006.
[2]J.Gottlieb.Onthefeasibilityproblemofpenalty-based
evolutionaryalgorithmsforknapsackproblems.InE.J.W.Boers,S.Cagnoni,J.Gottlieb,E.Hart,P.L.Lanzi,G.R.Raidl,R.E.Smith,andH.Tijink,editors,ApplicationsofevolutionaryComputing:Proc.EvoWorkshops2001,Berlin,2001.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务