7.2 定义与命题 第1课时 定义与命题
1.理解定义、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)
2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.(难点)
一、情境导入
神舟十号是中国神舟号系列飞船之一,主要由推进舱(服务舱)、返回舱、轨道舱组成.神舟十号在酒泉卫星发射中心“921工位”,于2013年6月11日17时38分02.666秒发射,由长征二号F改进型运载火箭(遥十)“神箭”成功发射.在轨飞行十五天左右,加上发射与返回,其中停留天宫一号十二天,共搭载三位航天员——聂海胜、张晓光、王亚平.6月13日与天宫一号进行对接.6月26日回归地球.要读懂这段报导,你认为要知道哪些名称和术语的含义?
二、合作探究 探究点一:定义
下列语句属于定义的是( ) A.明天是晴天
B.长方形的四个角都是直角 C.等角的补角相等
D.平行四边形是两组对边分别平行的四边形
解析:作出正确选择的关键是理解定义的含义.A是对天气的预测,B是描述长方形的性质,C是描述补角的性质.只有D符合定义的概念.故选D.
方法总结:定义指的是对术语和名称的含义的描述,是对一个事物区分于其他事物的本质特征的描述,而不是对其性质的判断.
探究点二:命题
【类型一】 命题的概念 下列各语句中,哪些是命题,哪些不是命题? (1)相等的角都是直角. (2)空气是无色无味的. (3)同旁内角相等吗?
(4)两条直线被第三条直线所截. (5)画线段AB=5cm.
(6)对顶角不相等.
解析:(1)(2)(6)是命题,因为它们指出了是什么或不是什么;(3)是疑问句,(4)描述的是一个状态,(5)叙述的是一个过程,因此(3)(4)(5)都不是命题,因为它们都不含有判断的意思.
解:(1)(2)(6)是命题,(3)(4)(5)不是命题.
方法总结:认为“错误的命题不是命题”是错误的,实际上错误的命题也是命题,如本题中的(6)题.
【类型二】 命题的结构 把下列命题改写成“如果……那么……”的形式. (1)对顶角相等;
(2)垂直于同一条直线的两条直线平行; (3)同角或等角的余角相等.
解析:设法把命题的题设和结论部分省略的文字找出来,要从文字的内在顺序、内在意义进行全面考虑,分清命题的题设部分和结论部分;再将它写成“如果……那么……”的形式.
解:(1)如果两个角是对顶角,那么这两个角相等.
(2)如果两条直线都和第三条直线垂直,那么这两条直线平行.
(3)如果两个角是同一个角的余角或两个相等的角的余角,那么这两个角相等.
方法总结:(1)命题改写的原则:不改变命题的原意;为了改写后的语句通畅且保持原意,应适当地增加或删减词语或调换词序;
(2)命题改写的方法:先搞清命题的题设(已知事项)部分和结论部分;再将其改写为“如果……那么……”的形式:“如果”后面跟的是已知事项,“那么”后面跟的是由已知事项推出的事项(即结论).
【类型三】 真命题、假命题、反例 判断下列命题是真命题还是假命题,若是假命题请举一个反例加以说明. (1)两个角的和是180°,则这两个角是邻补角;
(2)一组对边平行,另一组对边相等的四边形是平行四边形;
22
(3)如果x>y,那么x>y.
解析:(1)互补的两个角的和为180°,但是互补的两个角不一定是邻补角;(2)一组对边平行,但这组对边不相等,即使另一组对边相等,也不一定是平行四边形;(3)若|x|<|y|,
22
则x 22 (3)假命题.例如:x=2,y=-3,x>y,但x 三、板书设计 定义概念:判断一个事件的句子 定义与命题 命题结构:如果……那么……分类:真命题、假命题 通过对学生的启发、调整、激励让学生对定义、命题等概念有一个清楚的认识和了解, 用比较数学化的观点来审视生活中或数学学习中遇到的语句特征,充分展示学生的语言表达能力,力图通过学生的自主学习来体现学生的主体地位. 7.3 平行线的判定 第一环节:情景引入 活动内容: 回顾两直线平行的判定方法 师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢? 生1:在同一平面内,不相交的两条直线就叫做平行线. 生2:两条直线都和第三条直线平行,则这两条直线互相平行. 生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行. 师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的. 上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实. 我们知道: “在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨. 活动目的: 回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔. 教学效果: 由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识. 第二环节:探索平行线判定方法的证明 活动内容: ① 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式: 如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a∥b. 如何证明这个题呢?我们来分析分析. 师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可 以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行. 因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补 ,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3. 师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”) 证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义) ∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义) ∴∠3=180°-∠2(等式 的性质) ∴∠1=∠3(等量代换) ∴a∥b(同位角相等,两直线平行) 这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理. 这一定理可简单地写 成:同旁内角互补,两直线平行. 注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件 ,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内. ② 证明:内错角相等,两直线平行. 师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画) 生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB. 师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程. 师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2. 求证:a∥b 证明:∵∠1=∠2(已知) ∠1+∠3=180°(平角定义) ∴∠2+∠3=180°(等量代换) ∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行). 这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行. ③ 借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢? 生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b. 证明:∵a⊥c,b⊥c(已知) ∴∠1=90°∠2=90°(垂直的定义) ∴∠1=∠2(等量代换) ∴b∥a(同位角相等,两直线平行) 生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论. 师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理. 活动目的: 通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定 定理,并逐步掌握规范的推理格式. 教学效果: 由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是 将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步. 第三环节:反馈练习 活动内容: 课本第231页的随堂练习第一题 活动目 的: 巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进. 教学 效果: 由于此题只是简单地运用到平行线的判定的三个定理(公理),因此, 学生都能很快完成此题. 第四环节:学生反思与课堂小结 活动内容: ① 这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表: ② 由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角. ③ 注意:证明语言的规范化.推理过程要有依据. 活动目的: 通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性. 教学效果: 学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识. 课后作业:课本第232页习题6.4第1,2,3题 思考题:课本第233页习题6.4第4题(给学有余力的同学做) 教学反思 平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即 通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。 因篇幅问题不能全部显示,请点此查看更多更全内容