一、选择题(共8小题,满分24分,每小题3分)1.在1,0,,3这四个数中,最大的数是(A.12.16等于(A.43.实数2,0.3,A.2)B.4C.4)D.5)D.256B.0)C.D.31,2,中,无理数的个数是(7B.3C.44.实数a,b,c在数轴上的对应点的位置如图所示,若ab,则下列结论中错误的是(A.ab0B.ac<0C.bc>0D.ac<05.利用教材中的计算器依次按键如下:则计算器显示的结果与下列各数中最接近的一个是(A.2.5B.2.6)C.2.8)D.2.96.下列说法,其中正确说法的个数是(①64的立方根是4③②49的算术平方根是7④B.211的立方根是27311的平方根是164D.4A.1C.37.在实数范围内定义运算“☆”:a☆bab1,例如:2☆32314.如果2☆x1,则x的值是(A.1)B.1C.0D.28.利用计算器计算出的下表中各数的算术平方根如下:……0.06250.250.6250.79066.252.562.57.90662525625079.0662500250)……根据以上规律,若1.691.30,16.94.11,则1690(A.13.0B.130C.41.1D.411二、填空题(共6小题,满分24分,每小题4分)初中数学八年级上册1/49.(4分)我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有________(注:填写出所有错误说法的编号)10.(4分)规定用符号[m]表示一个实数m的整数部分,例如0,[]3,按此规定,3
2
[101]________.m11.(4分)若m,n为实数,且m3n30,则n2020
的值为________.12.(4分)甲同学利用计算器探索.一个数x的平方,并将数据记录如表:x
16.2262.4416.3265.6916.4268.9616.5272.2516.6275.5616.7278.8916.8282.2416.9285.6117.0289x2
请根据表求出275.56的平方根是________.13.(4分)125
的立方根是________.814.(4分)比较大小:52________25.三、解答题(共8小题,满分52分)115.(5分)计算:(1)2020362327.416.(6分)求出下列x的值:(1)27x380;(2)3x1120.初中数学八年级上册2/4217.(6分)已知4a7的立方根是3,2a2b2的算术平方根是4.(1)求a,b的值;(2)求6a3b的平方根.18.(6分)(1)求出下列各数:①27的立方根;②3的平方根;③81的算术平方根.(2)将(1)中求出的每一个数准确地表示在数轴上,并用<连接大小.19.(6分)有一种用“☆”定义的新运算,对于任意实数a,b,都有a☆bb22a1.例如7☆44227131.(1)已知m☆3的结果是4,则m________.(2)将两个实数2n和n2用这种新定义“☆”加以运算,结果为9,则n的值是多少?ab>0, 则a>b20.(7分)“比差法”是数学中常用的比较两个数大小的方法,即:ab0,则 ab.ab<0,则 a<b例如:比较192与2的大小:初中数学八年级上册3/41922194,又16<19<25,则4<19<5,1922194>0,192>2.请根据上述方法解答以下问题:比较223与3的大小.21.(8分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若13的整数部分为a,小数部分为b,求a2b13的值.(2)已知:103xy,其中x是整数,且0<y<1,求xy的值.22.(8分)(1)用“<”“>”或“”填空:1________2,2________3;(2)由以上可知:①12=________,②(3)计算:1223=________20182019.(结果保留根号)2334初中数学八年级上册4/4第11章综合测试
答案解析
一、1.【答案】C【解析】解:根据实数比较大小的方法,可得1<0<3<,在这四个数中,最大的数是.故选:C.2.【答案】B【解析】解:16=4.故选:B.3.【答案】A【解析】解:2,是无理数,共有2个无理数.故选:A.4.【答案】B【解析】解:ab,实数a,b在数轴上的对应点的中点是原点,a<0<b<c,且c>a,ab0,A不符合题意;ac>0,B符合题意;bc>0,C不符合题意;ac<0,D不符合题意.故选:B.5.【答案】B【解析】解:72.64,与7最接近的是2.6,故选:B.6.【答案】A【解析】解:①64的立方根是4,故此选项错误;②49的算术平方根是7,故此选项错误;初中数学八年级上册1/511
的立方根是,正确;27311
④的平方根是:,故此选项错误;164③故选:A.7.【答案】C【解析】解:由题意知:2☆x2x11x,又2☆x1,1x1,x0.故选:C.8.【答案】C【解析】解:由表格可以发现:被开方数的小数点(向左或者右)每移动两位,其算术平方根的小数点相应的向相同方向移动一位.16.91001690,169016.91041.1.故选:C.二、9.【答案】⑤【解析】解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如42;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.10.【答案】4【解析】解:3<10<4,4<10+1<5,1014.故答案为:411.【答案】1【解析】解:|m3|n30,初中数学八年级上册2/5m30,n30,解得m3,n3,m则n2020
332020
12020
1,故答案为:1.12.【答案】16.6【解析】解:观察表格数据可知:275.5616.6
所以275.56的平方根是16.6.故答案为16.6.13.【答案】【解析】解:
1255
的立方根是,825214.【答案】>故答案为:.【解析】解:52=50,25=20,50>20,52>25.故答案为:>.三、15.【答案】解:原式16
332
1173
213.216.【答案】解:(1)27x380,27x38,8,272
解得:x;3则x3(2)3x1120,初中数学八年级上册3/523x112,x14,则x12,解得:x3或x1.17.【答案】解:(1)4a7的立方根是3,2a2b2的算术平方根是4,224a727,2a2b216,a5,b2;(2)由(1)知a5,b2,6a3b653236,6a3b的平方根为6.18.【答案】解:(1)①27的立方根是3;②3的平方根是3;③81的算术平方根是3;(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:3<3<3<3.19.【答案】解:(1)根据题意可得:m☆3322m14,解得:m7;故答案为:7;(2)根据题意可得:2n☆n29,即n24n19,解得:n2或2,2n2☆2n4n22n219,解得:n2或则n2或3,23或2.220.【答案】223>3
【解析】解:22332233523,初中数学八年级上册4/516<23<25,4<23<5,523>0,223>3.21.【答案】解:(1)3<13<4,a3,b133,a2b1332133136;(2)1<3<2,又103xy,其中x是整数,且0<y<1,x11,y31,xy11
31123.<22.【答案】(1)<(2)2132(3)原式2132432019201820191【解析】解:(1)1<2,2<3,1<2,2<3;故答案为:<;<;(2)12<0,23<0,①221;②2332;故答案为:21;32;(3)原式2132432019201820191.初中数学八年级上册5/5
因篇幅问题不能全部显示,请点此查看更多更全内容