搜索
您的当前位置:首页正文

宁夏回族自治区2009年初中毕业暨高中阶段招生

来源:爱够旅游网
www.zhongkao.com

宁夏回族自治区2009年初中毕业暨高中阶段招生

数 学 试 题

注意事项:

1.考试时间120分钟,全卷总分120分. 2.答题前将密封线内的项目填写清楚. 3.答卷一律使用黑、蓝钢笔或圆珠笔.

4.凡使用答题卡的考生,答卷前务必将答题卡上的有关项目填写清楚.选择题的每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.不使用答题卡的考生,将选择题的答案答在试卷上.

一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1.下列运算正确的是( )

A.a·aa B.(6a6)(2a2)3a3 C.(a2)2a24 D.2a3aa

2.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为( )

A.25(1x)264 B.25(1x)264 C.64(1x)225 D.64(1x)225 3.把不等式组 1

34122x11的解集表示在数轴上,下列选项正确的是( )

x2≤31

0

1

0 1

1 0 1

1 0 1

A. B. C. D.

4.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误..的是( )

A.众数是85 B.平均数是85 C.中位数是80 D.极差是15 5.一次函数y2x3的图象不经过( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

6.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为( ) A.24π B.32π C.36π D.48π 6 6

4 4 4

俯视图 主视图 左视图

(7题图)

(6题图)

www.zhongkao.com

www.zhongkao.com

7.在44的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )

A.1个 B.2个 C.3个 D.4个

y 28.二次函数yaxbxc(a0)的图象如图所示,对称轴是直线x1,则下列四个结论错误的是( ) ..A.c0 B.2ab0 C.b4ac0 D.abc0 二、填空题(每小题3分,共24分) 9.分解因式:mmn .

3221 1 O 1 x (8题图)

,AB3,BC2,则cosA的值是 . 10.在Rt△ABC中,C90°11.已知:ab3,ab1,化简(a2)(b2)的结果是 . 212.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”.你认为售货员应标在标签上的价格为 元.

13.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为 . 14.如图,梯形ABCD的两条对角线交于点E,图中面积相等的三角形共有 对.

C A

A D

E O B C C B A B D

(14题图) (16题图) (15题图)

15.如图,△ABC的周长为32,且ABAC,ADBC于D,△ACD的周长为24,那么AD的长为 .

16.如图,⊙O是边长为2的等边三角形ABC的内切圆,则图中阴影部分的面积为 .

三、解答题(共24分) 17.(6分)

1计算:12(2009)31.

201

www.zhongkao.com

www.zhongkao.com

18.(6分) 解分式方程: 19.(6分)

已知正比例函数yk1x(k10)与反比例函数y1x2. x33xk2(k20)的图象交于A、B两点,点xA的坐标为(2,1).

(1)求正比例函数、反比例函数的表达式; (2)求点B的坐标. 20.(6分)

桌子上放有质地均匀,反面相同的4张卡片.正面分别标有数字1、2、3、4,将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标的数字作为十位上的数字,将取出的卡片反面朝上放回洗匀;再从中任意抽取1张卡片,用卡片上所标的数字作为个位数字.试用列表或画树状图的方法分析,组成的两位数恰好能被3整除的概率是多少?

www.zhongkao.com

www.zhongkao.com

四、解答题(48分) 21.(6分)

在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中. (1)参加展销的D型号轿车有多少辆? (2)请你将图2的统计图补充完整;

(3)通过计算说明,哪一种型号的轿车销售情况最好? (4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.

已售出轿车/辆

各型号参展轿车数的百分比

200 168 130 A 150 98 35% 100 D

B 50 C 20% 0 20%

A B C D 型号

(图1) (图2) 22.(6分)

如图:在Rt△ABC中,ACB90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得四边形ABCE.

C E

求证:EC∥AB. B A D

www.zhongkao.com

www.zhongkao.com

23.(8分)

已知:如图,AB为⊙O的直径,ABAC,BC交⊙O于点D,AC交⊙O于点E,BAC45°.

A (1)求EBC的度数;

(2)求证:BDCD.

O

E

C

D B 24.(8分) 如图,抛物线y122xx2与x轴交于A、B两点,与y轴交于C点. 22(1)求A、B、C三点的坐标;

(2)证明△ABC为直角三角形;

(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形,若存在,请求出点P的坐标,若不存在,请说明理由.

y C

A O B x

www.zhongkao.com

www.zhongkao.com

25.(10分)

如图1、图2,是一款家用的垃圾桶,踏板AB(与地面平行)或绕定点P(固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持APAP,BPBP).通过向下踩踏点A到A(与地面接触点)使点B上升到点B,与此同时传动杆BH运动到BH的位置,点H绕固定点D旋转(DH为旋转半径)至点H,从而使桶盖打开一个张角HDH. 如图3,桶盖打开后,传动杆HB所在的直线分别与水平直线AB、DH垂直,垂足为点M、C,设HC=BM.测得AP6cm,PB12cm,DH8cm.要使桶盖张开的角度HDH不小于60°,那么踏板AB离地面的高度至少等于多少cm?(结果保留两位有效数字)

(参考数据:2≈1.41,3≈1.73)

H′H D

B′

A

A′ P B (图1) (图2)

www.zhongkao.com

H′ H C D

B′ A A′ P M B (图3)

www.zhongkao.com

26.(10分)

已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段

MN运动的时间为t秒.

(1)线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形

MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围.

C Q P B

A M N

www.zhongkao.com

www.zhongkao.com

宁夏回族自治区2009年初中毕业暨高中阶段招生

数学试卷参考答案

一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 题号 答案 题号 答案 1 D 9 2 A 10 3 B 11 2 4 C 12 120 5 B 13 6 A 14 3 7 C 15 8 9 D 16 二、填空题(每小题3分,共24分)

m(mn)(mn) 5 342 13π 3三、解答题(共24分) 17.(6分)计算:

解:原式=231231 ······························································································ 4分 =33 ······································································································································ 6分 18.(6分)解分式方程:

解:去分母得:1x2(x3) ···························································································· 3分 整理方程得:3x7

7 ······································································································································ 5分 37经检验x是原方程的解.

37······································································································ 6分 原方程的解为x. ·3x19.(6分)

1)分别代入yk1x与y解:(1)把点A(2,k1k2得 x1,k22. ·················································································································· 2分 212············································ 3分 正比例函数、反比例函数的表达式为:yx,y. ·

2xy(2)由方程组y1xx12x222得,.

y1y1212xB点坐标是(2,1). ········································································································ 6分

20.(6分) 解:列表:

www.zhongkao.com

www.zhongkao.com

个位数 十位数 1 2 3 4

树状图:

1 1 11 21 31 41 2 12 22 32 42 3 13 23 33 43 4 14 24 34 44 开始 2 3 4 ························································· 3分

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

能被3整除的两位数的概率是

5. ·················································································· 6分 16四、解答题(共48分) 21(6分) 解:(1)100025%250(辆) ······················································································ 1分 (2)如图,(100020%50%100) ······ ········· 2分

销售轿车辆数 (3)四种型号轿车的成交率:

200 168 16898A:100%48%B:100%49% 130 150 35020098 100 100 130C:50% D:100%52% 50 2500 ····························· 4分 D种型号的轿车销售情况最好. ·

A B C D 型号

16816821(4).

4966221················································································ 6分 抽到A型号轿车发票的概率为. ·6222.(6分)

证明:CD是AB边上的中线,且ACB90°, CDAD.

CADACD. ············································································································ 2分 又△ACE是由△ADC沿AC边所在的直线折叠而成的, ECAACD.············································································································· 4分 ECACAD.············································································································· 5分 EC∥AB. ······················································································································· 6分 23.(8分) A (1)解:AB是⊙O的直径, AEB90°.

O 又BAC45°, ABE45°. E 又ABAC,

C

D B www.zhongkao.com

16898100130www.zhongkao.com

ABCC67.5°. EBC22.5°. ··············································································································· 4分 (2)证明:连结AD. AB是⊙O的直径, ADB90°. ADBC. 又ABAC, BDCD. ························································································································ 8分

24.(8分)

解:(1)抛物线y122xx2与x轴交于A、B两点, 2212x2x20.

22即x2x40.

解之得:x12,x222.

. ····································································· 2分 点A、B的坐标为A(2,、(0)B22,0)将x0代入y2122········································ 3分 xx2,得C点的坐标为(0,2)

22(2)AC6,BC23,AB32,

AB2AC2BC2,

则ACB90°,

△ABC是直角三角形. ······································································································ 6分 (3)将y2代入y122xx2 22得122xx22, 22x10,x22.

P点坐标为(2,········································································································· 8分 2). ·

25.(10分)

过点A作ANAB垂足为N点, 在Rt△HCD中,

若HDH不小于60°,

www.zhongkao.com

www.zhongkao.com

HC3 ≥sin60HD23··········································· 5分 HD43 ·2A N A′ H′ H C D 即HC≥················································· 6分 BMHC≥43 ·B′ P M B Rt△ANP∽Rt△BMP

ANAP

BMBPANAP·BM643································································ 9分 ≥23≈3.5cm·

BP12······································································· 10分 踏板AB离地面的高度至少等于3.5cm. ·26.(10分)

(1)过点C作CDAB,垂足为D. 则AD2,

当MN运动到被CD垂直平分时,四边形MNQP是矩形, 即AMC P Q

3时,四边形MNQP是矩形, 23B M D N A 秒时,四边形MNQP是矩形. 23PMAMtan60°=3,

23S四边形MNQP3 ·············································································································· 4分

2C (2)1°当0t1时,

1Q S四边形MNQP(PMQN·)MN 213t3(t1) P 2t3t3 ··································································· 6分 2A M N C

Q

B

2°当1≤t≤2时

1S四边形MNQP(PMQN·)MN

213t3(3t)·1

233 ··········································································· 8分 23°当2t3时,

P A M N

B www.zhongkao.com

www.zhongkao.com

S四边形MNQP1(PMQN·)MN 2C P

13(3t)3(4t) 273t3 ···························································· 10分

2Q A

M

N B

www.zhongkao.com

因篇幅问题不能全部显示,请点此查看更多更全内容

Top