搜索
您的当前位置:首页正文

静电纺丝制备纳米纤维材料及应用研究进展

来源:爱够旅游网
第42卷第4期

2018年7

燕山大学学报

Journal of Yanshan University

Vol. 42 No. 4

July 2018

文章编号:1007-791X(2018)04~0283-13

静电纺丝制备纳米纤维材料及应用研究进展

焦体峰1,2’*,黄欣欣1,2,展方可1,2

(1.燕山大学环境与化学工程学院,河北秦皇岛066004;2.燕山大学河北省应用化学重点实验室,河北秦皇岛066004)

摘要:纳米纤维具有直径可控、结构可控、髙比表面积以及易于进行表面修饰的特点而受到广泛的关注。静 电纺丝作为一种制备纳米纤维的技术,具有髙效,可控等优点,在众多制备纳米纤维的方法中脱颖而出。纳米 纤维具有结构多样性、组成多样性、功能多样性等特点,逐渐引起人们的关注。本文介绍了基于电流体动力学 的静电纺丝原理,简要讨论了制备多种组成不同、结构不同、排列顺序不同的纳米纤维的工艺。最后,重点探究 了纳米纤维作为载体的多种应用并进行展望。关键词:静电纺丝;纳米纤维;综述中图分类号:O648.12

文献标识码:A

DOI : 10.3969/j. issn. 1007-791X.2018. 04.001

0引言

20世纪30年代,人们发现高压电场下,粘弹

1静电纺丝原理

简言之,静电纺丝是利用聚合物溶液或熔体

性流体会被拉成超细纤维,称为静电纺丝技术。 经过不断的研究和发展,这种技术可以用来制备 直径为几十纳米的连续纤维。纳米材料研究的迅 速升温,激起了人们对静电纺丝(又称电纺)技术 的浓厚兴趣。与模板聚合法、融喷法等纳米纤维 制备方法相比,静电纺丝法是目前唯一能够直接、 连续制备聚合物纳米纤维的方法[1-4]。

纳米纤维定义有狭义、广义之分。狭义的纳 米纤维指直径为纳米尺度范围,即指纤维直径小 于100 nm的超细纤维。广义的纳米纤维指将纳 米微粒填充到纤维中,对纤维进行改性。只要纤 维中包含有纳米结构,而且还被赋予了新的物性, 就可以划入纳米纤维的范畴,也就是通常意义上 的纳米纤维。而目前生产纳米纤维最普遍、最实 用的方法,就是静电纺丝法[5 8]。

在静电作用下进行喷射拉伸而获得纳米纤维的方 法。少量粘弹性流体在泵的作用下通过喷丝针头 时,由于表面张力的作用,液滴会呈球形。喷丝针 头与高压电源连接,高压电场下,针头尖端的液滴 表面会被相同的电荷覆盖[910]。液滴所带电荷间 的斥力与表面张力相互抵消,使球形液滴变得不 稳定。如果液滴表面斥力足够强,足以克服表面 张力,液滴将形成圆锥形。电场作用下,开始喷射 时,液滴形成“泰勒锥”。喷流直径持续变小,然后 开始弯曲,进入“不稳定的鞭打”状态并加速波动。 随着时间推移,溶剂蒸发,射流直径急剧 下降[11—12]。

静电纺丝装置安装简单,操作方便。装置主 要由4个部分组成:高压电源、注射泵、喷丝针头、 接收器。静电纺丝装置图及相机下喷射流固化形 成超细纤维的射流图片如图1所示。

收稿日期:2017-12-24 责任编辑:王建青

基金项目:国家自然科学基金资助项目(21473153);河北省青年拔尖人才支持计划;中国博士后科学基金资助项目(2015M580214); 河北省高等学校科学研究重点项目(ZD2018091);秦皇岛市科学技术研究与发展计划(201701B004)

作者简介:*焦体峰(1978-),男’山东章丘人’博士’教授’博士生导师’主要研究方向为功能纳米材料与超分子组装,Email: tfjiao@

ysu.edu.cn。

284燕山大学学报2018

李玲玲等人采用静电纺丝和煅烧法制备了 NiO/ Ti〇2纳米介孔复合纤维。在研究负载MO对复合 材料的微观结构和光催化产氢活性的影响时发现 NiO的最佳负载量为0. 25% (质量分数),产^速 率为337滋mol h-1 g-1,表观量子效率(QE)为 1.7%,是Ti〇2的7倍[15]。高温烧结不但增加了

⑻静电纺丝装置图

(b)射流图片

颗粒的尺寸而且会形成不同的表面纹理。图2 (a)、( b)为NiO/Ti〇2复合纳米纤维的扫描(SEM) 图像。图2(a)为Ti〇2复合纳米纤维低倍率SEM 图像。由图可知,利用静电纺丝制备的纳米纤维 具有一维结构、高长径比、无规则排布的特点,有 利于应用于光催化制备^领域。图2(b)为 WMo颐WTiO2=0.25的复合纤维,纤维中Ni、Ti元素 分布与图2(c)、(d)相对应。由图2(e)TEM图可 知,纳米纤维中含有很多大小不同的颗粒。对图2 (f)HRTEM中的清晰的晶格条纹进行分析:晶面 间距为0. 352 nm,与锐钛矿型二氧化钛(101)的晶 面间距一致,从而证实了 Ti〇2的存在。另外,0. 209 nm的晶面间距与立方结构NiO的(200)晶面 一致,证实了 NiO的存在。

图1

Fig. 1

静电纺丝原理图及射流图片

Electrospinning principle and jet images

2

2.1

多种纳米纤维的制作工艺

无机陶瓷纳米纤维

静电纺丝是一种可以从溶液中制备纳米纤维

的技术[13],当与溶胶-凝胶化学相结合时,便可制 备复合材料和陶瓷化学材料[14]。主要有3个步 骤:1)利用溶胶凝胶前驱体、聚合物和溶剂制备出 稳定的胶体悬浮液(溶胶);2)通过静电纺丝技术 制备复合纳米纤维;3)通过煅烧或溶剂萃取方法 选择性除去有机组分,从而得到陶瓷纳米纤维。

(a) TK32复合纳米纤维样品SEM图像(b)复合纤维的尚倍率SEM图像

(d) Ni元素分布(f) Ti〇2复合纳米纤维的HRTEM图像

图2 Ti〇2复合纳米纤维形貌图及元素分布图

Fig. 2

The images of TiO2 composite nanofibers topography and element distribution

朱亮亮等人利用静电纺丝方法制备了一种简 单、低成本、可扩展的具有小麦状结构的Ti〇2/ CuO复合纳米纤维[16鄄17]。与常规表面耦合负载催

化剂纳米粒子的方法不同,他们在电纺Ti〇2纳米纤维时掺入铜纳米粒子,Ti〇2纳米纤维能够阻止颗粒浸出,具有良好稳定性并且可回收。掺入质

第4期焦体峰等静电纺丝制备纳米纤维材料及应用研究进展285

量分数为2. 5%的铜纳米粒子的TiO2/CuO纳米纤 维经500益退火后,复合材料具有小麦状结构(如 图3),能够提高光催化过程中的^的生成速率, 是普通Ti〇2纳米纤维的16. 8倍。此外,复合纳米

纤维具有良好的光降解活性[18]。通过类似的方 法,许多其他的无机材料,包括Si〇2、Al2〇3、Sn〇2、 ZrO2、CeO2、Fe3O4,NiFe2O4等,也可以加工成纳米纤维[19]。

(a)退火前SEM图(b)退火后SEM图

TiO2/CuO

Fig. 3

3

纳米纤维退火前后对比图

Comparison of TiO2/CuO nanofibers before and after annealing

2.2有机多孔纳米纤维

使用静电纺丝方法制备的纳米纤维具有单一

纳米纤维。通过同轴喷丝针头喷射两种不溶性的 溶液可以制备出尺寸可控的核-壳或多孔纤 维[25鄄26]。图5(a)为制备核-壳结构纳米纤维的装 置原理图。通过对准两毛细管的同心位置矫正喷 丝头进行,重矿物油作为内流液,含Ti(OiPr)4的 PVP溶液作为外流液,两液体同时喷出形成同轴 射流。制备中空纤维是通过煅烧或溶剂萃取的方 法有选择性地去除液芯。通过改变实验参数,可 以将中空纳米纤维的内径和壁厚从几十纳米调整 到几百纳米。图5(b)为TiO2中空纳米纤维的 SEM图。制备同轴静电纺丝时,通过在油相中适 当的引入硅烷,可使中空纳米纤维的内、外表面官 能化,易与另一类型的硅烷在外表面上形成自组 装膜[27]。江等人对这种方法进行扩展,通过多流 体系统的同轴静电纺丝装置制备出纤维线管 结构[28]。2.4

定向排列纳米纤维

一般情况下,制备的纳米纤维排布杂乱无章。 然而,许多应用要求纳米纤维定向排布。我们可 以通过机械、磁性或静电方法,调整纳米纤维的制 备过程达到目的[29鄄31]。机械方法是使用旋转轴获 得沿旋转轴方向的纤维。磁力方法是通过向聚合 物溶液中加入少量磁性纳米粒子,对溶液进行磁 化,然后在磁场的作用下,拉伸纳米纤维,使纤维 定向[31]。人们利用静电力设计了特殊的收集器, 可使纳米纤维定向排布。收集器中有一对电极,

的固态结构。因此,对纳米纤维进行孔处理非常 必要,这些孔可以极大地提高其比表面积。制备 多孔纳米纤维一般有两种方法:1)选择性的去除 纤维中的某种组成成份;2)在溶剂未完全凝固之 前,通过快速冷却纤维,诱导聚合物溶剂相分 离[20鄄24]。例如:多孔陶瓷纤维是首先通过静电纺 丝方法制备出陶瓷纤维,然后有选择性的去除聚 合物制备多孔结构[15]。使用二氯甲烷(DCM)等 高挥发性溶剂经过静电纺丝法可制备出表面具有 大孔洞的纳米纤维[22鄄23]。图4 ( a)是将PLLA溶于 DCM溶液中,再通过静电纺丝方法制备高度多孔 聚(L-乳酸)(PLLA)纳米纤维的SEM图。将生成 的纤维直接介入低温液体,可达到聚合物-溶剂两 项分离的目的[24]。图4(b)~(d)分别显示了由着鄄 己内酯(PCL)、聚丙烯腈(PAN)和聚偏氟乙烯 (PVDF)制备的纳米纤维放入液态氮中,然后真空 干燥得到的多孔纳米纤维。插图为纤维内部放大 图,突出纤维横截面上的高度多孔结构。与通过 溶剂萃取法制备样品不同,如果在制备过程中使 用低温液体,纤维的形态会被完好保存[25]。这种 方法可以扩展到从各种聚合物中得到多孔纳米 纤维。2.3

空心纳米复合纤维

适当调整静电纺丝装置可以制备管状结构的

286燕山大学学报2018

可使纳米纤维横跨间隙对齐[29鄄30]。图6(a)中两组 静电力(静电场力为电场库仑力作用力,F2为 带负电接地电极作用力)作用在相反的方向上拉 伸带电的纤维迫使它穿过间隙。由于放电延迟, 沉积纤维间的静电斥力,加强纤维对准程度。图6 (b)中的纤维就是使用这种方法制备的一种定向 的PCL纳米纤维。基于此理论,通过设计绝缘衬 底(例如,石英和聚苯乙烯)上的金膜的形状可获

得不同的纤维沉积图案。沉积形状包括圆形、三 角形、正方形、长方形。图6(c)为在三角形收集 器绝缘区域上沉积的PVP纳米纤维的光学显微图 像。图6(d)为另一个样品的光学显微照片,环形 电极作为收集器。这些结果表明,通过合理设计, 可以获得排布复杂纳米纤维图案。此外,将不同 电极的连续接地,很容易地获得层层堆叠的双层 或多层网格状纤维[31]。

(a)聚乳酸多孔纤维的SEM图像(b)含有PCL成分的纳米纤维的SEM图像

(c)含有PAN成分的纳米纤维的SEM图像(d)含有PVDF成分的纳米纤维的SEM图像

图4

Fig. 4

含有不同成分的多孔纳米纤维的SEM图像

The SEM images of porous nanofibers with different compositions

图5

Fig. 5

同轴静电纺丝装置及制得纤维形貌图

The coaxial electrospinning device and obtained fiber topography

第4期焦体峰等静电纺丝制备纳米纤维材料及应用研究进展287

(a)带电纳米纤维静电作用力示意(b)单向对齐的PCL纳米纤维的SEM图像

(c)三角形沉积纤维光学显微照片(d)环形沉积纤维光学显微照片

图6

Fig. 6

有序排列纤维的原理图及纤维形貌图像

Orderly arranged fiber schematic and fiber morphology images

3以纳米纤维为载体的复合材料

通过静电纺丝技术制备的纳米纤维有着很多

制备方面进展突出[37];马凯等人成功地利用肽调 控的功能性生色团自组装形成的纳米结构进行了 人工模拟光捕获[38];高雅瑰、刘青青等人在制备载 药胶体用于催化、吸附方面取得理想成果[39]。本 课题组也在静电纺丝纤维负载催化剂方面进行了 成功的实验,主要针对污水处理、染料吸附、空气 过滤等。

笔者课题组利用静电纺丝技术成功地制备了 PVA/PAA/GO-COOH复合纳米纤维膜[40],然后通 过PDA对纤维进行表面功能化修饰,用来去除有 机染料,克服了长期以来GO与有机纤维材料难复 合、稳定性低的困难[41-43]。图7(a)为通过静电纺 丝技术和温度处理后的PVA/PAA/GO-COOH纳 米复合纤维膜,从图中可以观察到许多纤维在GO 片层上交错相连。图7(b) ~(d)表示经过不同时 间之后,不同程度的PDA在纤维表面修饰,实现了 对PVA/PAA/GO-COOH纤维膜的改性,并且PDA 具有自组装特性,室温条件下可以在各种各样的 固态基底上自组装,形成?〇人膜[44鄄^]。纳米纤维 为PDA膜的形成提供了一个非常适合的基底[48]。 PDA和⑶之间的仔一仔键,极大地促进了对染料 的吸附性[48-50]。另外GO中的羰基官能团带有强

独特的性质,例如纤维比表面积大、直径可控性高 并且制备纳米纤维所需的材料广泛易得,贵金属 纳米粒子作为非均相催化剂已广泛用于各种类型 的氧化、还原和偶联反应[32]。高分子聚合物纳米 纤维具有孔隙率高、热稳定性好、比表面积大的优 良特点,因此常被选作催化剂载体[33]。人们也研

究了可作为Fe3〇4、Ti〇2、纳米Au等催化剂载体的 纳米纤维,这些纳米纤维可由聚乙烯醇(PVA)、聚 丙烯酸(PAA)、氧化石墨烯(⑶)、聚多巴胺 (PDA)、壳聚糖(CD)、聚己内酯(PCL)和聚环氧 乙烷(PEO)等各种成份制备[34鄄35]。通过调整实验 条件和纤维成分,可以获得不同类型的纳米纤维。 例如,通过调控静电纺丝实验过程的参数,可以得 到粗细不同、堆积密度不同的纳米纤维。通过向 纺丝液中加入活性成分,可以改变纤维表面的活 性位点数目,使其更容易与催化剂结合[36]。目前 笔者课题组在纳米超分子自组装方面收获颇丰, 主要包括LB膜自组装技术、凝胶溶胶、静电纺丝 技术。孙舒鑫、陈凯月等人在纳米自组装LB薄膜

288燕山大学学报2018

负电荷性,产生的强电场可促进染料的扩散和富 集[51]。结果表明:负载PDA的纳米纤维比未负载 PDA的纳米纤维展现出更好的染料去除性能[50]。

对浓度为21.54 mg/g罗丹明(MB)溶液的吸附量 达到81.4%,并且纳米纤维膜经过10次循环仍具 有极好的稳定性,仍能达到较高的吸附效果[40,51]。

(b)修饰聚多巴胺5 h后SEM图

(c)修饰聚多巴胺15 h后SEM图(d)修饰聚多巴胺35 h后SEM图

图7 PVA/PAA/GO-COOH复合纳米纤维及聚多巴胺修饰后SEM图

Fig. 7

PVA/PAA/GO-COOH composite nanofibers and SEM images after surface PDA treatments

笔笔者课题组在邢蕊蕊,侯彩丽等人的研究 基础上成功地利用静电纺丝技术制备出PVA/ PAA/GO-COOH@TiO2复合纳米纤维用于染料的 去除[52-53],并利用乂即、处3、丁[麗、红外光谱等技 术研究了该复合材料的结构形态及催化性能。图 8(a)中SEM图像表明,合成的TiO2纳米颗粒均 匀,粒径范围为100 ~200 nm。图8(b)表明,通过 静电纺丝技术和随后的热处理,PVA/PAA/GO- COOH纳米复合材料中出现了交联多孔纤维和 GO片层。图8(c) ~(f)清楚地表明了随着TiO2 纳米粒子改性的时间增加,PVA/PAA/GO-COOH 膜的表面被更多的TiO2纳米粒子修饰。结果表 明:所研制的TiO2尺寸在100 ~ 200 nm范围内,比 较均匀,比表面积很大,在可控的纳米纤维和GO 片层间能够维持较高的稳定性[53]。对浓度为

27.52 mg/g的罗丹明(MB)溶液的吸附量达到 90%,纳米纤维膜经过10次循环使用后仍具有较 高的吸附性能[51]。

近年来金纳米粒子(AuNPs)由于具有优良的 催化性,独特的物理及化学性能,引起了人们的广 泛关注。但是其易集聚且扩散性能滞缓限制了其 在液相中发展和应用[54-60]。为解决这些局限,笔 者课题组经过深入研究,利用静电纺丝方法制备 了 PVA/PAA/Fe3O4@ AuNPs 纳米复合纤维[60]。 图9(a)的SEM表明PVA/PAA纳米纤维平均直 径为300 nm。如图9(b)所示,形成的三元PVA/ PAA/Fe3O4纳米复合膜也具有长且直的纳米结 构,在纤维的表面和内部空间上具有大量的纳米 颗粒并且PVA/PAA/Fe3O4纳米复合材料的纤维 直径非常均匀。此外,图9(c) ~(e)展示了碳化

第4期焦体峰等静电纺丝制备纳米纤维材料及应用研究进展289

PVA/PAA/Fe3O4@ AuNPs纳米纤维及其所含的 Fe和Au兀素的兀素分布图。由图可知,大量的 Fe3〇4纳米粒子和AuNPs很好地分布在获得的复 合纤维上[55-62]。Fe3〇4纳米颗粒表面的羧基可与 PVA分子中的一些羟基结合。热处理后,所制备

的纤维由于热交联反应而变得不溶且结构均匀。 在SEM测量之前,PVA/PAA纳米纤维和PVA/ PAA/Fe3〇4纳米纤维由于具有较差的导电性的有 机复合物已经用AuNPs(1 ~3 nm)涂覆[60]。

(c)Ti〇2 修饰 10h 后 SEM 图

图8

Fig. 8

PVA/PAA/GO-COOH

纳米纤维及经表面处理之后负载TiO2的

SEM

PVA/PAA/GO-COOH nanofibers and SEM images of TiO2 after surface treatment

PVA/PAA/Fe3O4基底具有高稳定性、高比表 面积、高活性位点等特点,能够提高AuNPs在基底 表面分散度。此外,PVA/PAA/Fe3O4@ AuNPs纳 米复合材料易于通过外部磁场分离(图10(a)), 这也验证了以前的磁性测量[61-69]。PVA/PAA/

Fe3O4@ AuNPs纳米复合纤维具有高温稳定性,良 好的磁性[62],在催化对硝基苯酚、邻硝基苯胺溶液 万面展现出显者效果(图10(b))。实验结果表 明:由于内部电场作用,复合纤维在溶液中很容易 分散,催化还原4-硝基苯酚可达到92%,经过反复

290燕山大学学报2018

洗涤和干燥,微变形的膜复合材料仍保持较高的 催化性能,而且,F&O4纳米粒子仍然牢牢地固定 在膜上,从而保证了磁性和可回收性[70鄄74]。纳米

复合材料具有优异的稳定性,在催化领域具有广 阔的应用前景[75鄄81]。

(a) PVA/PAA纳米纤维的SEM图(b) PVA/PAA@Fe304复合纳米纤维的SEM图

(e)表面碳化的复合纳米纤维(d)Fe元素分布图(e) Au元素分布图

图9

Fig. 9

复合纤维及元素分布图

Composite fiber and elemental distribution

图10复合纤维表观磁性及催化性能图

Fig. 10

Apparent magnetic and catalytic properties of composite fibers

文献[82-90]探讨了不同高分子聚合物纳米 纤维作为负载催化剂和吸附剂被广泛应用的案 例。纳米纤维粗细可控,比表面积大,孔隙率大, 稳定性高,可以克服催化剂、吸附剂不易分散,表 面团聚的问题,进而受到广泛关注[86-92]。目前人

们已经开展了多种纳米纤维负载贵金属、金属氧 化物进行各种催化及吸附性能的应用实验[93-104]。 目前纳米纤维也越来越多地应用在医学领域,尤 其在组织再生、载药、三维支架材料方面贡献 突出[105-112]。

第4期焦体峰等静电纺丝制备纳米纤维材料及应用研究进展

291

4总结与展望

综上所述,作为一个简单并且广泛使用的技

术,静电纺丝可满足人们从广泛的材料中快速制 备纳米纤维材料的愿望。通过研究纳米纤维的组 成、结构、孔隙率、表面和纤维方向等方面,可以有 选择地定制纤维属性从而进行各种应用。虽然纳 米纤维在非均相催化、生物医学研究等领域的应 用前景广阔,但仍面临着一系列挑战,如分散性不 高,降解性不可控等。对于陶瓷纳米纤维来说,仍 然需要提高其机械强度和柔韧性,这样便可作为 独立结构被广泛的应用。随着对纳米纤维微观结 构的精确控制,制备具有表面活性的纳米纤维海 绵,将为柔性、可循环性的催化体系的开发提供可 能。作为用于组织再生支架聚合物纳米纤维,其 设计、组成和结构,仍然需要在临床应用中进一步 优化。

目前,制备纳米纤维还处于实验室研究阶段, 纤维产量低,无法达到批量生产,难以实现工业 化。尽管静电纺丝方法简单,可制备多种组成不 同、结构不同、排列不同的纳米纤维,但是仍然存 在诸多挑战,如静电纺丝制备的纳米纤维无法得 到彼此分离的长丝,并且产量低、强度低,从而限 制了其应用。目前,人们对这些问题有一定突破。 通过模拟天然组织的复杂空间分布,三维支架在 组成、排列、孔隙率和孔径等方面有了功能分级, 这将会使其在组织再生应用方面有更好的改进。 相信,在不久的将来,静电纺丝技术将会得到充分 发展,最终实现从实验室到工业、从基础研究到临 床应用。

参考文献

|1| XL M, WANG M, XL H, et al. Electrospun-technolog^^-derived

high-peiformance electrochemical energy storage devices | J | . Chemistry An Asian Journal, 2016, 11 穴21 雪:2967-2995■|2|

W'ANG X Y, DREW C, LEE S H, et al. Electrospinning technology: a novel approach to sensor application | J | ■ Journal of Macromolecular Science: Part A-Chemistry, 2002, 39 穴 10 雪: 1251-1258.

|3 | XIN Z C, WANG Y X, HLANG L J, et al. The study on origin of

electrospinning

nanofibers

|J | .

Science

Technology

and

Engineering, 2014( 19) : 13-19.

|4 | DERSCH R, GRAESER M, GREINER A, et al. Electrospinning of

nanofibres: towards new techniques, functions, and applications

|J | . Australian Journal of Chemistry, 2007, 60( 10) : 719-728.|5 | BHATTACHARJEE P K, SCHNEIDER T M, BRENNER M P, et

al. On the measured current in electrospinning | J | . Journal of Applied Physics, 2010, 107(4) : 2387-2405.

|6| SPADACCIO C, NAPPI F, DE M F, et al. Preliminary in vivo

evaluation

of

a

hybrid

armored

vascular

graft

combining

electrospinning and additive manufacturing techniques |J | . Drug Target Insights, 2016, 10( Suppl 1) : 1-7.

| 7 | LEI T, YL L, ZHENG G, et al. Electrospinning-induced preferred

dipole orientation in PVDF fibers |J| . Journal of Materials Science, 2015, 50( 12) : 4342^347.|8|

SLLTAN

LIPOL L, RAHMAN

M

M. Electrospinning and

electrospun nanofibers | J | . W’orld Journal of Nano Science & Engineering, 2016, 6( 2) : 45-50.

|9| JL J, KANG W, Li L, et al. Preparation of poly( tetrafluoroethylene)

nanofiber film by electro-blown spinning method J | . Materials

Letters, 2016, 171: 236-239.

| 10 | YANG D, LI E Z, GLO W, et al. Research and industrial

development of nanofibers prepared by electrospinning J | .

Materials Review, 2011,25: 64-68.

| 11| ZHANG H T, WANG Q, CHEN Z, et al. Dynamics and feedback

control of electrospinning processes |J| . IEEE Transactions on Control Systems Technology,2017,25(2):611-618.

12 | AN B, WANG J. Electrostatic spinning research and application

progress of zein fibers

| J| . Shandong Textile

Science

& Technology,2016(2):50-52.

| 13| PAN H, ZHL Y, HL J, et al. Influence of spinning voltage on

piezoelectric properties of electrostatic spinning PVDF fiber membranes | J|. Technical Textiles, 2016( 8) : 16-20.

| 14| RAJALA J W, LNG H, LOLLA D, et al. Core-shell electrospun

hollow aluminum oxide ceramic fibers | J| . Fibers, 2015, 2015 (3):450462.

| 15| LI L, CHENG B, WANG Y, et al. Enhanced photocatalytic H2-

production

activity

of

bicomponent

NiO/TiOg

composite

nanofibers | J| . Journal of Colloid & Interface Science, 2015, 449 (8) :115-121.

16 | ZHL L, HONG M, HO G W. Fabrication of wheat grain textured

TiOs/CuO

composite

nanofibers

for

enhanced

solar

H2,

generation and degradation performance J | . Nano Energy, 2015, 11:28-37.

|17| GAO M M, ZHL L L, WEI L O, et al. Structural design of TiO2-

based

photocatalyst

for

H2

production

and

degradation

applications |J| . Catalysis Science & Technology, 2015, 5( 10): 4703-4726.

| 18| FORMO E, YAVLZ M S, LEE E P, et al. Functionalization of

electrospun ceramic nanofibre membranes with noble-metal nano­structures for catalytic applications J | . Journal of Materials

Chemistry,2009,19(23):3878-3882.

| 19| LL P, QIAO B, LL N, et al. Photochemical deposition of highly

292燕山大学学报

2018

dispersed Pt nanoparticles on porous Ce〇2 nanofibers for the water-gas shift reaction | J| . Advanced Functional Materials,2015,25(26):4153-4162.

| 20| SENTHAMIZHAN A, CELEBIOGLL A, BALLSAMY B, et al.

Immobilization of gold nanoclusters inside porous electrospunfibers for selective detection of Cu( II) : a strategic approach to shielding pristine performance |J| . Scientific Reports, 2015,5: 15608.

| 21 |

KATSOGIANNIS

K

A

G,

VLADISAVLJEVI C

G

T,

GEORGIADOL S. Porous electrospun polycaprolactone fibers:Effect of process parameters J | . Journal of Polymer Science Part B-Polymer Physics, 2016, 54( 18) : 1878-1888.

| 22| PANDHLMAS T, PANAWONG C, LOIHA S, et al. Porous

electrospun fibers as optical sensor for metal ion J | . Chiang Mai Journal of Science, 2017,44(4) : 1704-1713.

| 23 | LL P, XIA Y. Maneuvering the internal porosity and surface

morphology of electrospun polystyrene yarns by controlling the solvent and relative humidity | J| . Langmuir, 2013, 29 ( 23): 7070-7078.

| 24 | YOO S H, JOH H I, LEE S. Synthesis of porous carbon nanofiber

with

bamboo-like

carbon

nanofiber

branches

by

one-step

carbonization process |J|. Applied Surface Science, 2017, 402: 456-462.

| 25 | LI W, MA S, LI Y, et al. Enhanced ethanol sensing performance of

hollow ZnO-SnO2 , core-shell nanofibers J | . Sensors & Actuators B-Chemical, 2015,211:392^02.26 |

PRAKOBNA

K, GALLAND

S, BERGLLND

L

A. High-

performance and moisture-stable cellulose-starch nanocomposites based

on

bioinspired

core-shell

nanofibers

J | .

Biomacromolecules, 2015, 16(3) : 904-912.

27 | WANG Z, ZHAO L, WANG P, et al. Low material density and

high microwave-absorption performance of hollow strontium ferritenanofibers prepared via coaxial electrospinning J | . Journal of Alloys & Compounds, 2016, 687: 541-547.

28 | YANG C, YL D G, PAN D, et al. Electrospun pH-sensitive core­

shell polymer nanocomposites fabricated using a tri-axial process | J| . Acta Biomaterialia, 2016,35: 77-86.

| 29| WANG Q, YAO Q, CHANG J, et al. Enhanced thermoelectric

properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains J | . Journal of Materials

Chemistry,2012,22(34):17612-17618.

| 30 | CHEN X, FL X, SHI J G, et al. Regulation of the osteogenesis of

pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments

J | . Nanomedicine

Nanotechnology Biology & Medicine,2013, 9(8): 1283-1292.

| 31| ZHENG Z, GAN L, LI H Q, et al. A fully transparent and

flexible ultraviolet-visible photodetector based on controlled electrospun

ZnO-CdO

heterojunction

nanofiber arrays

|J| .

Advanced Functional Materials, 2015, 25:5877-5877.

| 32| LLEWELLYN D B, DAN A, ARNDTSEN B A. Cheminform

abstract: a novel example of chiral counteranion induced enanti- oselective metal catalysis:

the importance of ion-pairing in

copper-catalyzed olefin aziridination and cyclopropanation | J| . Organic Letters, 2015,2(26): 4165-4168.

| 33 | NALBANDIAN M J, ZHANG M, SANCHEZ J, et al. Synthesis and

optimization of BiV〇4, and co-catalyzed BiV〇4, nanofibers for visible light-activated

photocatalytic

degradation

of aquatic

micropollutants J | . Journal of Molecular Catalysis A-Chemical, 2015,s404^05: 18-26.

| 34| H. MA, C. BLRGER, B. S. HSIAO, et al. Fabrication and

characterization of cellulose nanofiber based thin-film nanofibrous composite membranes | J | . Membr. Sci. 2014(454) : 272-282.

|35| LLO Y, SHEN H, FANG Y, et al. Enhanced proliferation and

osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly ( lactic-co-glycolic acid ) nanofibrous mats |J| . ACS Applied Materials & Interfaces,2015, 7(11):6331-6339.

| 36| SALERNITANO E, GIORGI L, MAKRIS T D. Direct growth of

carbon nanofibers on carbon-based substrates as integrated gas diffusion and catalyst layer for polymer electrolyte fuel cells J | .International Journal of Hydrogen Energy, 2014, 39 ( 27 ): 15005-15016.

|37|焦体峰,

陈凯月,张乐欣.纳米自组装薄膜制备及应用研究进

展 |J|.燕山大学学报,2017,41(5):377-385.

JIAO T F, CHEN K Y, ZHANG L X. Research progress on preparation and application of self-assembled nanofilms J | .

Journal of Yanshan Lniversity, 2017,41(5): 377-385.

|38|焦体峰,马凯,

邢蕊蕊,等.肽调控生色团自组装纳米结构及

应用研究进展| J|.

燕山大学学报,2017,41(1):1-12.

JIAO T F, MA K, XING R R, et al. Recent progress on peptide- regulated self-assembly of chromophores nanoarchitectonics and applications | J| . Journal of Yanshan Lniversity, 2017, 41 ( 1):

1-12.

|39|焦体峰,

黄欣欣,张乐欣,等.光热剂/光敏剂纳米材料合成及

应用研究进展|J

|.燕山大学学报,2017,41(3):189-203.

JIAO T F, HLANG X X, ZHANG L X, et al. Recent progress on syntheses of nanomaterials based on photothermal agent /

photosensitizer

and

applications

|J|.

Journal

of

Yanshan

Lniversity,2017,41 (3): 189-203.

| 40| XING R, WANG W, JIAO T, et al. Bioinspired polydopamine

sheathed nanofibers

containing

carboxylate

graphene

oxide

nanosheet for high-efficient dyes scavenger J | . ACS Sustainable Chemistiy & Engineering, 2017,5(6): 4949-4956.

| 41|

王玮,焦体峰,侯彩丽,等.静电纺丝制备PVA/PAA/GO

三元

复合纤维材料|J

|.

燕山大学学报,2015,39(4):317-351.

WANG W, JIAO T F, HOL C L, et al. Preparation of PVA/PAA/ GO ternary composite fiber marterials by electrospinning J | . Journal of Yanshan Lniversity, 2015,39(4): 317-351.

| 42| PROMPHET N, RATTANARAT P, RANGKLPAN R, et al. An

electrochemical sensor based on graphene /polyaniline /polystyrene

第4期

焦体峰等静电纺丝制备纳米纤维材料及应用研究进展

293

nanoporous

fibers

modified

electrode

for

simultaneous

determination of lead and cadmium | J| . Sensors & Actuators B Chemical, 2015, 207: 526-534.

| 43| RYL J H, LEE Y, KONG W H, et al. Catechol-functionalized

chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials | J| . Biomacromolecules, 2011, 12( 7) : 2653-2659.

| 44| KONG J, YEE W A, WEI Y, et al. Silicon nanoparticles

encapsulated in hollow graphitized carbon nanofibers for lithium ion batter^^ anodes | J| . Nanoscale, 2013,5(7): 2967-2973.

| 45 | HLANG L, ARENA J T, MANICKAM S S, et al. Improved

mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification | J| . Journal of Membrane Science, 2014,460(9) : 241-249.

| 46 | RIM N G, KIM S J, SHIN Y M, et al. Mussel-inspired surface

modification of poly( L-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells | J | . Colloids & Surfaces B-Biointerfaces, 2012, 91(3) : 189-197.

|47| LI D, LLO L, PANG Z, et al. Novel phenolic biosensor based on a

magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite |J| . ACS Applied Materials & Interfaces, 2014,6(7):5144-5151.

| 48 | YAN J, HLANG Y, M1AO Y E, et al. Polydopamine-coated

electrospun poly( vinyl alcohol) /poly( acrylic acid) membranes as efficient dye adsorbent with good recyclability J | . Journal of

Hazardous Materials, 2015,283: 730-739.

| 49| BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal

conductivity of single-layer graphene J| . Nano Letters, 2008, 8 (3):902-907.

|50| ALMASIAN A, OLYA M E, MAHMOODI N M. Preparation and

adsorption

behavior

of

diethylenetriamine/polyacrylonitrile

composite nanofibers for a direct dye removal | J| . Fibers &Polymers,2015, 16(9): 1925-1934.

| 51 | ALMASIAN A, OLYA M E, MAHMOODI N M. Synthesis of

polyacrylonitrile/polyamidoamine

composite

nanofibers

using

electrospinning technique and their dye removal capacity | J| . Journal of the Taiwan Institute of Chemical Engineers, 2015, 49: 119-128.

| 52 | HOL C L, JIAO T F, XING R R, et al. Preparation of TiO2, nano­

particles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment J | . Journal of the Taiwan Institute of Chemical Engineers,2017(78) : 118-126.

| 53 | ZENG J, HOL H, WENDORFF J H, et al. Electrospun poly( vinyl

alcohol)/poly( acrylic acid) fibres with excellent water-stability | J| . e-Polymers, 2004, 4(1): 899-906.

|54| ZHOL Y,ZHL Y H, YANG X L, et al. Au decorated Fe3O4@

TiO2 magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol | J| . RSC Advances, 2015, 5 (62):50454-50461.

| 55| LAL M, ZIEFLSS A, KOMOSSA T, et al. Inclusion of supported

gold nanoparticles into their semiconductor support J | . Physical

Chemistry Chemical Physics,2015,17(43) :29311-29318.

| 56 | TVALRI I V, GERGIEVA B E, MAGKOEVA V D, et al. Carbon

monoxide

oxidation

on

lithium

fluoride

supported

gold

nanoparticles: A significance of F-centers J | . Solid State

Communications, 2015, s213-214:42-45.

|57| L1L X, ZHANG J, GLO X, et al. Porous alpha-Fe2O3 decorated by

Au nanoparticles and their enhanced sensor performance J | .

Nanotechnology^, 2010, 21(9): 095501.

| 58| KOROTCENKOV G, BRINZARI V, CHO B K. Conductometric

gas sensors

based

on

metal

oxides

modified

with

gold nanoparticles: a review | J| . Microchimica Acta, 2016, 183( 3): 1033-1054.

|59| ZHENG G, POLAVARAPL L, LIZMARZAN L M, et al. Gold

nanoparticle-loaded filter paper: a recyclable dip-catalyst for real­time reaction monitoring by surface enhanced Raman scattering | J| . Chemical Communications, 2015, 51(22) :4572-4575.

| 60 | GLO R, JIAO T F, XING R R, et al. Hierarchical AuNPs-loaded

Fe2 O3 polymers nanocomposites constructed by electrospinning with enhanced and magnetically recyclable catalytic capacities | J|. Nanomaterials, 2017, 7( 10) :317-333.

| 61 | ZHAO X, MA K, JIAO T, et al. Fabrication of hierarchical layer-

by-layer assembled diamond-based core-shell nanocomposites as highly efficient dye absorbents for wastewater treatment J | .

Scientific Reports, 2017,7: 44076.

| 62 | ZHANG R, XING R, JIAO T, et al. Carrier-free, chemophoto

dynamic

dual

nanodrugs

via

self-assembly

for

synergistic

antitumor therapy | J| . ACS Applied Materials & Interfaces, 2016, 8(21): 13262-13269.

| 63| GLO H, JIAO T F, ZHANG Q, et al. Preparation of graphene

oxide-based hydrogels as efficient dye adsorbents for wastewater treatment |J|. Nanoscale Research Letters, 2015, 10(1): 272-282.

| 64 | XIE J W, LI X R, JLSTIN L, et al.薹 Aligned-to-random薰 nanofiber

scaffolds for mimicking the structure of the tendon-to-bone insertion site | J|. Nanoscale,2010,2(6) :923-926.

| 65 | LIL W, LIPNER J, MORAN C H, et al. Generation of electrospun

nanofibers with controllable degrees of crimping through a simple, plasticizer-based treatment |J|. Advanced Materials, 2015, 27 (16):2583-2588.

|66| XIE J W, MACEWAN M R, LIL W, et al. Nerve guidance

conduits based

on

double-layered

scaffolds

of electrospun

nanofibers for repairing the peripheral nervous system J | . ACS Applied Materials & Interfaces, 2014, 6( 12) : 9472-9480.

| 67 | HAN J, W L Q, XIA Y, et al. Cell alignment induced by

anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation | J| . Stem Cell Research, 2016, 16 (3):740-750.

|68| XIE J, MACEWAN M R, RAY W Z, et al. Radially aligned,

electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications | J| . ACS Nano, 2010, 4(9):

294

燕山大学学报

2018

5027-5036.

| 69| XIE J, MACEWAN M R, SCHWARTZ A G, et al. Electrospun

nanofibers for neural tissue engineering | J | . Nanoscale, 2010, 2(1):35^4.

| 70| XIE J, MACEWAN M R, RAY W Z, et al. Radially aligned,

electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications | J| . ACS Nano, 2010, 4(9): 5027-5036.

| 71 | JIANG T, CARBONE E J, LO W H, et al. Electrospinning of

polymer nanofibers for tissue regeneration | J | . Progress in Polymer Science, 2015,46: 1-24.

| 72| SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et

al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drugdelivery and pharmaceuticals | J| . Chemical Society Reviews,2015,44(3):790-814.

| 73| ABOLALi S, GARAKANI M A, ZHANG B, et al. Electrospun

carbon nanofibers with in situ encapsulated Co3〇4 nanoparticles as electrodes for high-performance supercapacitors | J| . ACS Applied Materials & interfaces, 2015,7(24) : 13503-13511.

|74| AHMED F E, LALiA B S, HASHAiKEH R. A review on

electrospinning

for

membrane

fabrication:

challenges

and

applications | J|. Desalination, 2015, 356: 15-30.

| 75 |

W L H, PAN W.., LiN D, et al. Electrospinning of ceramic

nanofibers: fabrication, assembly and applications J | . Journal of Advanced Ceramics, 2012, 1(1): 2-23.

| 76| STARR J D, BLDi M A K, ANDREW J S. Processing-property

relationships

in

electrospun

janus-type

biphasic

ceramic

nanofibers | J| . Journal of the American Ceramic Society, 2015, 98(1) :12-19.

| 77 | PANDA P K. Ceramic nanofibers by electrospinning technique-

a review | J| . Transactions of the indian Ceramic Society, 2007,66(2) :65-76.

| 78 | ZHi M, XiANG C, Li J, et al. Nanostructured carbon-metal oxide

composite

electrodes

for

supercapacitors:

a

review

J | .

Nanoscale.2013,5( 1): 72-88.

|79| ZHANG B, XL Z L, KiM J K. in situ grown graphitic carbon/

Fe2 O3/carbon

nanofiber

composites

for

high

performance

freestanding anodes in Li-ion batteries |J| . RSC Advances,2014, 4(24): 12298-12301.

| 80 | WANG Y, ZHENG W, Li Z, et al. Electrospinning route for alpha-

Fe2O3 ceramic nanofibers and their gas sensing properties |J| . Materials Research Bulletin,2009,44(6) : 1432-1436.

| 81 |

OBLYA

E

A, HARRiGAN

W, ANDALA D

M, et

al. Photodeposited Pd

nanoparticle catalysts

supported

on

photoactivated TiO2 nanofibers J | . Journal of Molecular Catalysis A-Chemical, 2011,340(1): 89-98.

|82| EVANGELiSTA V, ACOSTA B, MiRiDONOV S, et al. Highly

active Au-CeO2@ ZrO2, yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol

J | . Applied Catalysis. B-

Environmental, 2015, 166-167: 518-528.

| 83 | ARSLAN O, EREN H, BiYiKLi N, et al. Reusable and flexible

heterogeneous catalyst for reduction of TNT by Pd nanocube decorated ZnO nanolayers onto electrospun polymeric nanofibers | J | . Chemistr^^ Select, 2017, 2(28) : 8790-8798.

| 84 | WEBER

J.

Nanostructured

poly

(benzimidazole):

from

mesoporous networks to nanofibers |J|. Chemsuschem, 2010, 3 (2):181-187.

85 | RLiZ-ROSAS R, BEDiA J, ROSAS J M, et al. Methanol

decomposition on electrospun zirconia nanofibers J | . Catalysis

Today, 2012,187(1):77-87.

| 86 | LELNG V, KO F. Biomedical applications of nanofibers | J| .

Polymers for Advanced Technologies, 2015,22(3): 350-365.

| 87 | BOAKYE M A D, RiJAL N P, ADHiKARi L, et al. Fabrication

and

characterization

of

electrospun

pcl-mgo-keratin-based

composite nanofibers for biomedical applications J | . Materials,2015,8(7):4080.

| 88 | YEO M G, KiM G H. Fabrication of cell-laden electrospun hybrid

scaffolds of alginate-based bioink and PCL microstructures for tissue regeneration | J| . Chemical Engineering Journal, 2015,275: 27-35.

| 89| JEONG S i, CHOi J B, SHiN Y M, et al. Effect of gamma

irradiation-induced degradation of alginate nanofibers for tissue engineering J | . Tissue Engineering & Regenerative Medicine,2014,11(2):64-71.

90 | LEE H J, SANG J L, LTHAMAN S, et al. Biomedical applications

of magnetically functionalized organic/inorganic hybrid nanofibers | J| . international Journal of Molecular Sciences, 2015, 16(6): 13661-13677.

| 91 | PiAi J F, SiLVA M A D, MARTiNS A, et al. Chondroitin sulfate

immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches J | . Applied Surface

Science, 2017,403(9):112-125.

92 | ABDAL-HAY A, HAMDY A S, KHALiL K A. Fabrication of

durable high performance hybrid nanofiber scaffolds for bone tissue regeneration using a novel, simple in situ, deposition approach of polyvinyl alcohol on electrospun nylon 6 nanofibers | J| . Materials Letters, 2015, 147: 25-28.

| 93 | XiE J, MACEWAN M R, WiLLERTH S M, et al. Conductive core­

sheath nanofibers and their potential application in neural tissue engineering J | . Advanced Functional Materials, 2009, 19 ( 14) : 2312-2318.

| 94 | XiE J, LiL W, MACEWAN M R, et al. Nanofiber membranes with

controllable microwells and structural cues and their use in forming cell microarrays and neuronal networks |J| . Small,2011, 7(3):293-297.

95 | SCHNELL E, KLiNKHAMMER K, BALZER S, et al. Guidance of

glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend | J| . Biomaterials, 2007, 28(19): 3012-3025.

第4期

焦体峰等静电纺丝制备纳米纤维材料及应用研究进展

Macromolecules, 2012,51(4) : 627 -631.

295

|96 | COREY J M, LIN D Y, MYCEK K B, et al. Aligned electrospun

nanofibers specify the direction of dorsal root ganglia neurite growth J 演.Journal of Biomedical Materials Research Part A2007熏 83A( 3): 636-645.

|97 | SILL T J, VON RECLM H A. Electrospinning: applications in

drug delivery and tissue engineering |J|. Biomaterials 2008, 29 (13):1989-2006.

|98| XIE J, LIL W, MACEWAN M R, et al. Neurite outgrowth on

electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate |J | . ACS Nano,2014,8(2):1878-1885.

|99 | XLE J, YANG J, O'CONNOR D M, et al. Differentiation of bone

marrow stem cells into schwann cells for the promotion of neurite outgrowth on electrospun fibers |J | . ACS Applied Materials & Interfaces, 2017, 9( 14): 12299-12310.

|100 | LI X, XIE J, LIPNER J, et al. Nanofiber scaffolds with gradations

in mineral content for mimicking the tendon-to-bone insertion site | J |. Nano Letters, 2009, 9(7): 2763-2768.

1101 | CHEN X, WANG J, AN Q, et al. Electrospun poly( l-lactic acid-

co-e-caprolactone)

fibers loaded with heparin and vascular

106 |

| 105 | BLAKENEY B A, TAMBRALLi A, ANDERSON J M, et al. Cell

infiltration and growth in a low density, uncompressed three­dimensional electrospun nanofibrous scaffold J | . Biomaterials,2011,32(6):1583-1590.

SEiL J T, WEBSTER T J. Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds

J | . international Journal of

Nanomedicine, 2011,6( default) : 1095-1099.

| 107 | Qi L, ZHANG Z R, YiN L H, et al. Materials research of SF/

COL/PLCL and SF/COL/PLLA electrospun three-dimensional nanofiber scaffold J | . Journal of Functional Materials, 2014, 45(3):3141-3144.

| 108 | Li D, TONG W, HE N, et al. Three-dimensional polycaprolactone

scaffold via needleless electrospinning promotes cell proliferation and infiltration J | . Colloids & Surfaces B Biointerfaces, 2014, 121(9):432-443.

| 109| TONG H W, WANG M. Electrospinning of fibrous polymer

scaffolds

using

positive

voltage

or

negative

voltage:

a

comparative study | J | . Biomedical Materials, 2010, 5(5): 054110.

|110| KANG X, XiE Y, POWELL H M, et al. Adipogenesis of murine

embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds | J|. Biomaterials, 2007, 28(3): 450-458.

111 | RETZEPi M, DONOS N. Guided bone regeneration: biological

principle and therapeutic applications Res.2010,21(6):567-576.

| 112| KiM Y J, BAE Hi, KWON O K, et al. Three-dimensional gastric

cancer cell culture using nanofiber scaffold for chemosensitivity test

J | . international Journal of Biological Macromolecules,

J | . Clin. Oralimplants

endothelial growth factor to improve blood compatibility and endothelial progenitor cell

proliferation

| J | . Colloids

and

Surfaces B-Biointerfaces, 2015, 128: 106-114.

| 102| LIL W, LIPNER J, XIE J, et al. Nanofiber scaffolds with

gradients in mineral content for spatial control of osteogenesis | J|. ACS Applied Materials & Interfaces, 2014, 6(4): 2842-2849.

| 103| LIL W, YEH Y C, LIPNER J, et al. Enhancing the stiffness of

electrospun nanofiber scaffolds with a controlled surface coating and mineralization | J| . Langmuir,2011,27(15) :9088-9093.

| 104| SHARMA Y, TIWARI A, HATTORI S, et al. Fabrication of

conducting electrospun nanofibers scaffold for three-dimensional cells

culture

|J| .

international

Journal

of

Biological

2009,45(1):65-71.

Research progress and application in preparation of

nanofiber materials by electrospinning

JiAO Tifeng1'2, HLANG Xinxin1'2, ZHAN Fangke1'2

(1. School of Environmental and Chemical Engineering, Yanshan Lniversity, Qinhuangdao, Hebei 066004, China;

2. Hebei Key Laboratory of Applied Chemistry, Yanshan Lnivei’sky, Qinhuangdao, Hebei 066004, China)

Abstract: Nanofibers have attracted wide attention because of their characteristics of controllable diameter, controllable structure,

high specific surface area and easy surface modification. Electrospinning as a technique for preparing a nanofiber having a high effi­ciency, controllability, etc. , come to the fore in the method of preparation of numerous nanofibers. Nanofibers have the characteristics of structural diversity, composition diversity, and functional diversity, which have gradually attracted people's attention. in this paper, the principle of electrospinning based on electrohydrodynamics is introduced. The process of preparation of nanofibers with different composition, different structure and different arrangement order is briefly discussed. Finally, we focused on exploring the various applications of nanofibers as carriers and looking forward.

Keywords: electrospinning; nanofibers; reviews

因篇幅问题不能全部显示,请点此查看更多更全内容

Top