方差分析(ANOVA)、 多重比较(LSD Duncan)、q检验(student)
实际研究中,经常需要比较两组以上样本均数的差别,这时不能使用t检验方法作两两间的比较(如有人对四组均数的比较,作6次两两间的t检验),这势必增加两类错误的可能性(如原先a定为0.05,这样作多次的t检验将使最终推断时的a>0.05)。故对于两组以上的均数比较,必须使用方差分析的方法,当然方差分析方法亦适用于两组均数的比较。方差分析可调用此过程可完成。
Least-significant difference(LSD):最小显著差法。a可指定0~1之间任何显著性水平,默认值为0.05;
Bonferroni:Bonferroni修正差别检验法。a可指定0~1之间任何显著性水平,默认值为0.05;
Duncan’s multiple range test:Duncan多范围检验。只能指定a为0.05或0.01或0.1,默认值为0.05;
Student-Newman-Keuls:Student-Newman-Keuls检验,简称N-K检验,亦即q检验。a只能为0.05;(以前都以SNK法最为常用,但研究表明,当两两比较的次数极多时,该方法的假阳性非常高,最终可以达到100%。因此比较次数较多时,包括SPSS和SAS在内的权威统计软件都不再推荐使用此法。)
Tukey’s honestly significant difference:Tukey显著性检验。a只能为0.05;
Tukey’s b:Tukey另一种显著性检验。a只能为0.05;
Scheffe:Scheffe差别检验法。a可指定0~1之间任何显著性水平,默认值为0.05。
根据对相关研究的检索结果,除了参照所研究领域的惯例外,一般可以参照如下标准:
如果存在明确的对照组,要进行的是验证性研究,即计划好的某两个或几个组间(和对照组)的比较,宜用Bonferoni(LSD)法;若需要进行的是多个平均数间的两两比较(探索性研究),且各组样本数相等,宜用Tukey法,其他情况宜用Scheffe法。
另外Equal Variances Not Assumed复选框组提供了方差不齐时可以采用的两两比较方法,一般认为Games-Howell法稍好一些。不过由于这方面统计学界尚无定论,建议最好直接使用非参数检验方法。
另外Equal Variances Not Assumed复选框组提供了方差不齐时可以采用的两两比较方法,一般认为Games-Howell法稍好一些。不过由于这方面统计学界尚无定论,建议最好直接使用非参数检验方法。
因篇幅问题不能全部显示,请点此查看更多更全内容