(12)发明专利申请
(10)申请公布号 CN 108232207 A(43)申请公布日 2018.06.29
(21)申请号 201611158344.0(22)申请日 2016.12.14
(71)申请人 北京有色金属研究总院
地址 100088 北京市西城区新街口外大街2
号(72)发明人 曾蓉 李治应 蒋利军 刘晓鹏 (74)专利代理机构 北京北新智诚知识产权代理
有限公司 11100
代理人 刘秀青 熊国裕(51)Int.Cl.
H01M 4/88(2006.01)H01M 4/92(2006.01)B82Y 30/00(2011.01)
权利要求书1页 说明书4页 附图3页
()发明名称
一种纳米铂催化剂的制备方法
(57)摘要
本发明公开了一种纳米铂催化剂的制备方法。该方法包括如下步骤:(1)将无机纳米线、无机配合物纳米线或纳米碳在表面活性剂作用下分散在水或无水乙醇中,作为模板;(2)将金属铂盐溶解于水中;(3)将步骤(1)和步骤(2)得到的两种溶液混合,然后倒入无水的醇溶液中,搅拌均匀,将所得混合溶液升温至设定温度,反应完全后冷却至室温,用水清洗,干燥后得到产物。本发明在无需添加其它还原剂的情况下,通过纳米线或纳米颗粒为模板,利用金属铂盐在醇、水中溶解度的不同,在一定温度下,使金属铂盐在纳米线或纳米颗粒表面限域还原为金属铂,形成分散均匀、尺寸分布窄的铂纳米线或铂纳米颗粒,产物清洗简单。
CN 108232207 ACN 108232207 A
权 利 要 求 书
1/1页
1.一种纳米铂催化剂的制备方法,其特征在于,该方法包括如下步骤:(1)将无机纳米线、无机配合物纳米线或纳米碳在表面活性剂作用下分散在水或无水乙醇中,作为模板;
(2)将金属铂盐溶解于水中;
(3)将步骤(1)和步骤(2)得到的两种溶液混合,然后倒入无水的醇溶液中,搅拌均匀,将所得混合溶液升温至设定温度,反应完全后冷却至室温,用水清洗,干燥后得到产物。
2.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,所述金属铂盐为铂的钾盐或铵盐。
3.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,所述无机纳米线为ZnO、TiO2、SiO2、Si或SiC;所述无机配合物纳米线为CoOH(CO3)0.5、Ni(N2H4)3Cl2或2,4-二羟基苯甲酸-Pb(II)配合物;所述纳米碳为导电纳米碳XC72、导电纳米碳BP2000、纳米高石墨化碳或碳纳米管。
4.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,所述表面活性剂为三甲基十二烷基溴化铵、三甲基十六烷基溴化铵、四丁基溴化铵、四丁基氯化铵、甘胺酸、柠檬酸钠、十二烷基磺酸钠、PVP K5、PVP K15、PVP K30或PVP K90。
5.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,所述醇溶液为甲醇、乙醇、正丙醇、异丙醇、乙二醇或这几种醇中2-3种的混合醇溶液。
6.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,步骤(1)中所述表面活性剂在溶液中的质量分数为0-5%。
7.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,步骤(1)中作为模板的纳米线的摩尔浓度为0.001-0.5mol/L;作为模板的纳米碳的质量分数为0.001-10%。
8.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,步骤(2)中,铂金属盐的浓度为0.0001-0.3mol/L。
9.根据权利要求1所述的纳米铂催化剂的制备方法,其特征在于,步骤(3)中反应温度为50℃至所选用醇的沸点。
2
CN 108232207 A
说 明 书
一种纳米铂催化剂的制备方法
1/4页
技术领域[0001]本发明涉及一种纳米铂催化剂的制备方法,属于燃料电池纳米电催化剂制备技术领域。
背景技术[0002]燃料电池是一种将化学能直接转换为电能的装置,其核心是采用催化剂催化氧还原与氢氧化或醇氧化、甲酸氧化等。[0003]燃料电池正面临商业化的起步阶段,影响燃料电池商业化的一个重要问题是所用催化剂为贵金属铂,这极大地增加了燃料电池的成本,同时,由于铂的稀缺性,使燃料电池的大规模应用受到。已有研究表明,在燃料电池的应用中,Pt/C催化剂中2-3纳米铂颗粒易于在电化学的反应过程中因为电位的变化氧化为离子,又还原为金属,这使得铂重新沉积从而使铂颗粒长大,或者从碳载体上脱落,这些均会降低催化剂的使用寿命,同时碳载体也会被腐蚀(Z.Zhao et al.J.Power Sources,230,2013,236-243;J.C.Meier,ACS Catal.,2,2012,832-843;Z.Zhao,J.Power Sources,217,2012,449-458;K.L.Morea,ECS Transactions,3(1),2006,717-733)。针对这些问题,大量的研究集中在如何提高催化剂铂的利用率,降低催化剂铂的用量以及提高催化剂的稳定性和使用寿命,不同形貌的Pt及PtM合金催化剂是其中重要的方面。美国能源部确定的2015年汽车用质子交换膜燃料电池的铂用量目标值为0.15mg/cm2。孙世刚研究小组通过电压方波电沉积的方法,获得了高晶面指数{730}、{210}和/或{520}的铂24面体,这些具有高晶面指数的24面体具有很好的热(800℃)和化学稳定性,其对甲酸氧化活性最高提高约4倍,对乙醇氧化的活性最高提高约4.5倍(N.Tian,Z.Y Zhou,S.G.Sun,etc.Science,316,2007,732-735)。美国Argonne实验室2014年报道的Pt3Ni纳米框架结构催化剂,RDE测试结果表明其质量比活性及面积比活性分别是商用Pt/C催化剂的22倍及35倍(C.Chen,Y.J.Kang,et al.Science 343,2014,1339-1343)。由Pt3Ni纳米框架结构催化剂制备的膜电极的性能虽然优于Pt/C催化剂,然而在膜电极中,其质量比活性及面积比活性并没有达到商用Pt/C催化剂的22倍及35倍。3M公司纳米结构薄膜(nanostructured thin film,NSTF)催化剂是一类特殊的催化剂,为有序排列的纳米线Pt或PtM(M主要为Fe、Co、Ni,或CoMn、CoNi、NiFe、CoZr等),其PtCoMn-NSTF已达到美国能源部2015年铂载量及寿命要求,催化剂铂用量降至0.15mg/cm2,0.19g/kW(DOE Hydrogen and Fuel Cells Program Record-Platinum Group Metal Loading in PEMFC Stack-Record#11013.2/6/2011)。[0004]另一方面,纳米催化剂的批量制备技术也是制约其应用和发展的重要因素。3M公司采用方法为在有序化的有机纳米线上沉积金属颗粒,从而形成有序化的Pt、Pt合金纳米线。University of Rochester采用静电纺丝的方法制备Pt和Pt合金纳米线,其Pt纳米线的直径大约是5-6纳米,PtFe、PtNi合金纳米线直径大约10-20纳米。发明内容
3
CN 108232207 A[0005]
说 明 书
2/4页
本发明的目的在于提出一种纳米铂催化剂的制备方法,以获得分散均匀、尺寸分
布窄的铂纳米线或纳米颗粒。[0006]为实现上述目的,本发明采用以下技术方案:[0007]一种纳米铂催化剂的制备方法,该方法包括如下步骤:[0008](1)将无机纳米线、无机配合物纳米线或纳米碳在表面活性剂作用下分散在水或无水乙醇中,作为模板;[0009](2)将金属铂盐溶解于水中,形成金属铂盐溶液;[0010](3)将步骤(1)和步骤(2)得到的两种溶液混合,然后倒入无水的醇溶液中,搅拌均匀,将所得混合溶液升温至设定温度,反应完全后冷却至室温,用水清洗,干燥后得到产物。[0011]其中,对于步骤(3),如果步骤(1)中采用无水乙醇形成模板,则可以将金属铂盐溶液直接缓慢加入含模板的乙醇溶液中,搅拌均匀,将混合溶液升温至设定温度反应。所述步骤(3)中反应时间为0.1-6小时。[0012]所述金属铂盐为铂的钾盐或铵盐。[0013]所述无机纳米线为ZnO、TiO2、SiO2、Si或SiC;所述无机配合物纳米线为CoOH(CO3)0.5、Ni(N2H4)3Cl2或2,4-二羟基苯甲酸-Pb(II)配合物;所述纳米碳为导电纳米碳XC72、导电纳米碳BP2000、纳米高石墨化碳或碳纳米管。[0014]所述表面活性剂为含铵基的表面活性剂,包括三甲基十二烷基溴化铵、三甲基十六烷基溴化铵、四丁基溴化铵、四丁基氯化铵、甘胺酸;或者为柠檬酸钠或十二烷基磺酸钠;或者为PVP K5、PVP K15、PVP K30或PVP K90。[0015]所述醇溶液为甲醇、乙醇、正丙醇、异丙醇、乙二醇或这几种醇中2-3种的混合醇溶液。[0016]步骤(1)中所述表面活性剂在溶液中的质量分数为0-5%。[0017]步骤(1)中作为模板的纳米线的摩尔浓度为0.001-0.5mol/L;作为模板的纳米碳的质量分数为0.001-10%。[0018]步骤(2)中,铂金属盐的浓度为0.0001-0.3mol/L。[0019]步骤(3)中反应温度为50℃至所选用醇的沸点。[0020]本发明的优点在于:[0021]在无需添加其它还原剂的情况下,通过纳米线或纳米颗粒为模板,利用金属铂盐在醇、水中溶解度的不同,在一定温度下,使金属铂盐在纳米线或纳米颗粒表面限域还原为金属铂,形成分散均匀、尺寸分布窄的铂纳米线或纳米颗粒,产物清洗简单。本发明操作简便,具有实现批量化生产的潜力。附图说明[0022]图1为实施例1合成的催化剂的透射电镜图(TEM)。[0023]图2为实施例1合成的催化剂的EDX图谱。[0024]图3为实施例1合成的催化剂的选区电子衍射电镜图(SAED)。
具体实施方式[0025]下面结合附图和实施例对本发明做进一步说明。应该强调的是,下述说明仅仅是
4
CN 108232207 A
说 明 书
3/4页
示例性的,而不是为了本发明的范围及其应用。[0026]实施例1[0027]选用无机配合物纳米棒CoOH(CO3)0.5,配制成0.05mol/L溶液,加入柠檬酸钠为分散剂,柠檬酸钠质量分数为0.3%,将纳米棒CoOH(CO3)0.5均匀分散在水溶液中,溶液体积5mL。同时配制0.03mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至70℃,反应2小时。将产物清洗,干燥,得到网状铂纳米线。图1为制备的铂纳米线的透射电镜图,由图中可知,铂纳米线直径约2-3纳米,并形成网状结构。图2为制备的铂纳米线的EDX结果,结果显示纳米线的成分为铂,未检测出其它成分。图2中的铜来自为TEM制样用铜网中的铜。图3为制备的铂纳米线的选区电子衍射图,显示制备的铂纳米线为铂的多晶,图中标出了铂的晶面指数,分别为晶面(111)、(200)(220)、(311)、(222)。[0028]实施例2[0029]选用无机配合物纳米棒CoOH(CO3)0.5,配制成0.1mol/L溶液,加入柠檬酸钠为分散剂,柠檬酸钠质量分数为0.3%,将纳米棒CoOH(CO3)0.5分散在水溶液中,溶液体积5mL。同时配制0.03mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至75℃,反应2小时。将产物清洗,干燥,得到铂纳米线。[0030]实施例3[0031]选用无机配合物纳米棒CoOH(CO3)0.5,配制成0.05mol/L溶液,加入甘氨酸为分散剂,甘氨酸质量分数为1%,将纳米棒CoOH(CO3)0.5均匀分散在水溶液中,溶液体积5mL。同时配制0.02mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至70℃,反应2小时。将产物清洗,干燥,得到铂纳米线。[0032]实施例4[0033]选用无机配合物纳米棒CoOH(CO3)0.5,配制成0.05mol/L溶液,加入PVP K15为分散剂,PVP K15质量分数为1%,将纳米棒CoOH(CO3)0.5均匀分散在水溶液中,溶液体积5mL。同时配制0.01mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至70℃,反应2小时。将产物清洗,干燥,得到铂纳米线。[0034]实施例5[0035]选用无机配合物纳米棒CoOH(CO3)0.5,配制成0.05mol/L溶液,加入PVP K15为分散剂,PVP K15质量分数为1%,将纳米棒CoOH(CO3)0.5均匀分散在水溶液中,溶液体积5mL。同时配制0.01mol/L的氯铂酸铵水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至85℃,反应0.5小时。将产物清洗,干燥,得到铂纳米线。[0036]实施例6[0037]选用无机氧化物纳米棒SiO2,配制成0.05mol/L溶液,加入PVP K30为分散剂,PVP K30质量分数为1%,将纳米棒SiO2均匀分散在水溶液中,溶液体积5mL。同时配制0.01mol/L的氯铂酸铵水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至70℃,反应2小时。将产物清洗,干燥,得到铂纳米线。[0038]实施例7[0039]选用纳米碳XC72,配制成质量分数为5%的溶液,加入PVP K5为分散剂,PVP K5质量分数为1%,将纳米碳XC72均匀分散在水溶液中,溶液体积5mL。同时配制0.01mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至75℃,反
5
CN 108232207 A
说 明 书
4/4页
应2小时。将产物清洗,干燥,得到碳载铂纳米颗粒。[0040]实施例8[0041]选用纳米碳BP2000,配制成质量分数为5%的溶液,加入三甲基十二烷基溴化铵为分散剂,三甲基十二烷基溴化铵质量分数为1%,将纳米碳BP2000均匀分散在水溶液中,溶液体积5mL。同时配制0.03mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至75℃,反应2小时。将产物清洗,干燥,得到碳载铂纳米颗粒。[0042]实施例9[0043]选用纳米碳BP2000,配制成质量分数为5%的溶液,加入柠檬酸钠为分散剂,柠檬酸钠质量分数为2%,将纳米碳BP2000均匀分散在水溶液中,溶液体积5mL。同时配制0.03mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至75℃,反应6小时。将产物清洗,干燥,得到碳载铂纳米颗粒。[0044]实施例10[0045]选用纳米碳BP2000,配制成质量分数为5%的溶液,加入柠檬酸钠为分散剂,柠檬酸钠质量分数为2%,将纳米碳BP2000均匀分散在水溶液中,溶液体积5mL。同时配制0.03mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇与异丙醇的混合溶液中,无水乙醇与异丙醇的体积比为1∶1,搅拌均匀后,升温,回流反应6小时。将产物清洗,干燥,得到碳载铂纳米颗粒。[0046]实施例11[0047]选用碳纳米管,配制成质量分数为1%的溶液,加入柠檬酸钠为分散剂,柠檬酸钠质量分数为2%,将碳纳米管均匀分散在水溶液中,溶液体积5mL。同时配制0.03mol/L的氯铂酸钾水溶液5mL。将两种溶液混合均匀,并加入无水乙醇中,搅拌均匀后,升温至75℃,反应6小时。将产物清洗,干燥,得到碳载铂纳米颗粒。[0048]实施例12[0049]选用纳米碳BP2000,配制成质量分数为2%的乙醇溶液50mL。同时配制0.03mol/L的氯铂酸钾水溶液5mL。将氯铂酸钾水溶液加入纳米碳的无水乙醇溶液中,搅拌使两种溶液混合均匀,升温,回流反应6小时。将产物清洗,干燥,得到碳载铂纳米颗粒。
6
CN 108232207 A
说 明 书 附 图
1/3页
图1
7
CN 108232207 A
说 明 书 附 图
2/3页
图2
8
CN 108232207 A
说 明 书 附 图
3/3页
图3
9
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务