您好,欢迎来到爱够旅游网。
搜索
您的当前位置:首页九年级数学知识点归纳口诀

九年级数学知识点归纳口诀

来源:爱够旅游网
word 初中数学知识点归纳口诀(方案一)

1.1 有理数的加法运算

同号两数来相加,绝对值加不变号。 异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。 1.2 有理数的减法运算 减正等于加负,减负等于加正 1.3 有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。 2 合并同类项

说起合并同类项,法则千万不能忘。 只求系数代数和,字母指数留原样。

1 / 39

word 3 去、添括号法则

去括号、添括号,关键要看连接号。 扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。 4 解方程

已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。 5.1 平方差公式

两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。 完全平方公式

二数和或差平方,展开式它共三项。

2 / 39

word 首平方与末平方,首末二倍中间放。 和的平方加联结,先减后加差平方。 完全平方公式

首平方又末平方,二倍首末在。 和的平方加再加,先减后加差平方。 6.1 解一元一次方程

先去分母再括号,移项变号要记牢。 同类各项去合并,系数化“1”还没好。 求得未知须检验,回代值等才算了。 6.2 解一元一次方程

先去分母再括号,移项合并同类项。 系数化1还没好,准确无误不白忙。

3 / 39

word 7 因式分解与乘法

和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。 两式平方符号同,底积 因式分解能与否,符号上面有文章。 同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。 8.2 因式分解

一提二套三分组,十字相乘也上数。 2倍坐。

4 / 39

word 四种方法都不行,拆项添项去重组。 重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。 同式相乘若出现,乘方表示要记住 【注】 一提(提公因式)二套(套公式)8.3 因式分解 一提二套三分组,叉乘求根也上数。 五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。 用平方差公式因式分解

异号两个平方项,因式分解有办法。 两底和乘两底差,分解结果就是它。 用完全平方公式因式分解

5 / 39

word 两平方项在两端,底积2倍在中部。 同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。 两边为负中间正,底差平方相反数。 一平方又一平方,底积2倍在中路。 三正两底和平方,全负和方相反数。 分成两底差平方,两端为正倍积负。 两边若负中间正,底差平方相反数。 8.5 二次三项式的因式分解

先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。 9.1 比和比例

6 / 39

word 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。 分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。 前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。 两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。 9.2 解比例

外项积等内项积,列出方程并解之。 9.3 求比值

由已知去求比值,多种途径可利用。

7 / 39

word 活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。 正比例与反比例

商定变量成正比,积定变量成反比。 正比例与反比例 变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。 两端积等中间积,四数一定成比例。 判断四式成比例

四式是否成比例,生或降幂先排序。 两端积等中间积,四式便可成比例。

变化过程商一定,两个变量成正比。

8 / 39

word 9.6 比例中项

成比例的四项中,外项相同会遇到。 有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会碰到。 成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。 同数平方等异积,比例中项无处逃。 10 根式与无理式

表示方根代数式,都可称其为根式。 根式异于无理式,被开方式无 被开方式有字母,才能称为无理式。 无理式都是根式,区分它们有标志。 。

9 / 39

word 被开方式有字母,又可称为无理式。 11 求定义域

求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 条件不唯一,满足多个不等式。 求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 条件不唯一,不等式组求解集。 12.1 解一元一次不等式

先去分母再括号,移项合并同类项。

10 / 39

word 系数化“1”有讲究,同乘除负要变向。 先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”注意了。 同乘除正无防碍,同乘除负也变号。 12.2 解一元一次不等式组

大于头来小于尾,大小不一中间找。 大大小小没有解,四种情况全来了。 同向取两边,异向取中间。 中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。(大小小大就是它)

11 / 39

word 大大小小解集空。(小小大大哪有哇) 12.3 解一元二次不等式

首先化成一般式,构造函数第二站。 判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。 小于零将没有解,开口向下正相反。 13.1 用公式法解一元二次方程

要用公式解方程,首先化成一般式。 调整系数随其后,使其成为最简比。 确定参数abc,计算方程判别式。

12 / 39

word 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。

13.2 用常规配方法解一元二次方程 左未右已先分离,二系化“1”是其次。

一系折半再平方,两边同加没问题。 左边分解右合并,直接开方去解题。 该种解法叫配方,解方程时多练习。 13.3 用间接配方法解一元二次方程 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。 完全平方等常数,间接配方显优势 【注】 恒等式 13.4 解一元二次方程

13 / 39

word 方程没有一次项,直接开方最理想。 如果缺少常数项,因式分解没商量。 b、c相等都为零,等根是零不要忘。 b、c同时不为零,因式分解或配方, 也可直接套公式,因题而异择良方。 14.1 正比例函数的鉴别

判断正比例函数,检验当分两步走。 一量表示另一量, 有没有。 若有再去看取值,全体实数都需要。 区分正比例函数,衡量可分两步走。 一量表示另一量, 是与否。 若有还要看取值,全体实数都要有。

14 / 39

word 14.2 正比例函数的图象与性质 正比函数图直线,经过 和原点。 K正一三负二四,变化趋势记心间。 K正左低右边高,同某某小向爬山。 K负左高右边低,一大另小下山峦。 15.1 一次函数

一次函数图直线,经过 K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。 K称斜率b截距,截距为零变正函。 15.2 反比例函数

反比函数双曲线,经过 点。 点。

15 / 39

word K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。 15.3 二次函数

二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。

16 / 39

word 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。 A负数。

17 / 39

word 【注】基础抛物线 16 直线、射线与线段

直线射线与线段,形状相似有关联。 17 角 直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。

18 / 39

word 互余两角和直角,和是平角互补角。 一点出发两射线,组成图形叫做角。 平角反向且共线,平角之半叫直角。 平角两倍成周角,小于直角叫锐角。 钝角界于直平间,平周之间叫优角。 和为直角叫互余,互为补角和平角。18 证等积或比例线段

等积或比例线段,多种途径可以证。 证等积要改等比,对照图形看特征。 共点共线线相交,平行截比把题证。 三点定型十分像,想法来把相似证。 图形明显不相似,等线段比替换证。

19 / 39

word 换后结论能成立,原来命题即得证。 实在不行用面积,射影角分线也成。 只要学习肯登攀,手脑并用无不胜。 19 解无理方程

一无一有各一边,两无也要放两边。 乘方根号无踪迹,方程可解无负担。 两无一有相对难,两次乘方也好办。 特殊情况去换元,得解验根是必然。20 解分式方程

先约后乘公分母,整式方程转化出。 特殊情况可换元,去掉分母是出路。 求得解后要验根,原留增舍别含糊。

20 / 39

word 21 列方程解应用题

列方程解应用题,审设列解双检答。 审题弄清已未知,设元直间两办法。 列表画图造方程,解方程时守章法。 检验准且合题意,问求同一才作答。 22 添加辅助线

学习几何体会深,成败也许一线牵。 分散条件要集中,常要添加辅助线。 畏惧心理不要有,其次要把观念变。 熟能生巧有规律,真知灼见靠实践。 图中已知有中线,倍长中线把线连。 旋转构造全等形,等线段角可代换。

21 / 39

word 多条中线连中点,便可得到中位线。 倘若知角平分线,既可两边作垂线。 也可沿线去翻折,全等图形立呈现。 角分线若加垂线,等腰三角形可见。 角分线加平行线,等线段角位置变。 已知线段中垂线,连接两端等线段。 辅助线必画虚线,便与原图联系看。 23 两点间距离公式

同轴两点求距离,大减小数就为之。 与轴等距两个点,间距求法亦如此。 平面任意两个点,横纵标差先求值。 差方相加开平方,距离公式要牢记。

22 / 39

word 24.1 矩形的判定

任意一个四边形,三个直角成矩形; 对角线等互平分,四边形它是矩形。 已知平行四边形,一个直角叫矩形; 两对角线若相等,理所当然为矩形。 24.2 菱形的判定

任意一个四边形,四边相等成菱形; 四边形的对角线,垂直互分是菱形。 已知平行四边形,邻边相等叫菱形; 两对角线若垂直,顺理成章为菱形。

23 / 39

word 初中数学知识点归纳口诀(方案二)

1. 有理数的加法运算: 同号相加一边倒;

异号相加“大”减“小”,符号跟着大的跑; 绝对值相等“零”正好。

24 / 39

word 【注】“大”减“小”是指绝对值的大小。

2. 合并同类项:

合并同类项,法则不能忘。

只求系数和,字母、指数不变样。

3. 去、添括号法则:

去括号、添括号,关键看符号。

括号前面是正号,去、添括号不变号; 括号前面是负号,去、添括号都变号。

4. 一元一次方程:

已知未知要分离,分离方法就是移。

25 / 39

word 加减移项要变号,乘除移了要颠倒。

5. 恒等变换:

两个数字来相减,互换位置最常见。 正负只看其指数,奇数变号偶不变。 【注】(a-b)2n+1

=-(b - a)2n+1(a-b)2n =(b - a)2n

6. 平方差公式:

平方差公式有两项,符号相反切记牢。 首加尾乘首减尾,莫与完全公式相混淆。 7. 完全平方:

26 / 39

word 完全平方有三项,首尾符号是同乡, 首平方、尾平方,首尾二倍放; 首±尾括号带平方,尾项符号随。

8. 因式分解:

一提(公因式)二套(公式)三分组,细看几项不离谱。 两项只用平方差;

三项十字相乘法,阵法熟练不马虎;

四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组; 五项、六项更多项,二三、三三试分组; 以上若都行不通,拆项、添项看清楚。

9. “代入”口决:

挖去字母换上数(式),数字、字母都保留;

27 / 39

word 换上分数或负数,给它带上小括弧,

原括弧内出(现)括弧,逐级向下变括弧(小—中—大)。

10. 单项式运算:

加、减,乘、除,乘、开方,三级运算分得清。 系数进行同级(运)算,指数运算降级(进)行。

11. 一元一次不等式解题的一般步骤: 去分母、去括号,移项时候要变号; 同类项、合并好,再把系数来除掉;

两边除(以)负数时,不等号改向别忘了。

12. 一元一次不等式组的解集: 大大取较大,小小取较小;

28 / 39

word 小大,大小取中间; 大小,小大无处找。

13. 一元二次不等式、一元一次绝对值不等式的解集: 大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

14. 分式混合运算法则:

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算; 加减分母需同,分母化积关键; 找出最简公分母,通分不是很难; 变号必须两处,结果要求最简。

15. 分式方程的解法步骤:

29 / 39

word 同乘最简公分母,化成整式写清楚,

求得解后须验根,原(根)留、增(根)舍别含糊。

16. 最简根式的条件: 最简根式三条件, 号内不把分母含,

幂指(数)根指(数)要互质, 幂指比根指小一点。

17. 特殊点坐标特征:

坐标平面点(x,y),横在前来纵在后; (+,+),(-,+),(-,-)和(+,-),四个象限分前后; X轴上y为0,x为0在Y轴。

30 / 39

word 18. 象限角的平分线:

象限角的平分线,坐标特征有特点, 一、三横纵都相等,二、四横纵却相反。

19. 平行某轴的直线:

平行某轴的直线,点的坐标有讲究, 直线平行X轴,纵坐标相等横不同; 直线平行于Y轴,点的横坐标仍照旧。

20. 对称点坐标:

对称点坐标要记牢,相反数位置莫混淆, X轴对称y相反, Y轴对称,x前面添负号; 原点对称最好记,横纵坐标变符号。

31 / 39

word 21. 自变量的取值X围:

分式分母不为零,偶次根下负不行;

零次幂底数不为零,整式、奇次根全能行。

22. 函数图像的移动规律:

若把一次函数解析式写成y=k(x+0)+b,

二次函数的解析式写成y=a(x+h)2+k的形式, 则用下面后的口诀:

“左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了”。

23. 一次函数图像与性质口诀:

一次函数是直线,图像经过仨象限; 正比例函数更简单,经过原点一直线;

32 / 39

word 两个系数k与b,作用之大莫小看, k是斜率定夹角,b与Y轴来相见,

k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反; k的绝对值越大,线离横轴就越远。

24. 二次函数图像与性质口诀:

二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限;

开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。

25. 反比例函数图像与性质口诀:

33 / 39

word 反比例函数有特点,双曲线相背离的远;

k为正,图在一、三(象)限;k为负,图在二、四(象)限;

图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。

26. 巧记三角函数定义:

初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义: 一位不高明的厨子教徒弟杀鱼,说了这么一句话: 正对鱼磷(余邻)直刀切。

正:正弦或正切,对:对边即正是对;

余:余弦或余弦,邻:邻边即余是邻;切是直角边。

27. 三角函数的增减性:

34 / 39

word 正增余减

28. 特殊三角函数值记忆:

分母口诀:30度、45度、60度的正弦值、余弦值的分母都是30度、45度、60度的正切值、余切值的分母都是分子口诀:“123,321,三九二十七”。

29. 平行四边形的判定:

要证平行四边形,两个条件才能行。 一证对边都相等;或证对边都平行; 一组对边也可以,必须相等且平行。 对角线,是个宝,互相平分“跑不了”;对角相等也有用,“两组对角”才能成。

35 / 39

2,3,

word 30. 梯形问题的辅助线:

移动梯形对角线,两腰之和成一线; 平行移动一条腰,两腰同在“△”现; 延长两腰交一点,“△”中有平行线; 作出梯形两高线,矩形显示在眼前; 已知腰上一中线,莫忘作出中位线。

31. 添加辅助线歌:

辅助线,怎么添?找出规律是关键。

题中若有角(平)分线,可向两边作垂线;

线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。

32. 圆的证明歌:

36 / 39

word 圆的证明不算难,常把半径直径连; 有弦可作弦心距,它定垂直平分弦;

直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联, 圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见, 圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;

若是证题打转转,四点共圆可解难;

要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;

四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。

33. 圆中比例线段:

37 / 39

word 遇等积,改等比,横找竖找定相似; 不相似,别生气,等线等比来代替, 遇等比,改等积,引用射影和圆幂, 平行线,转比例,两端各自找联系。

34. 正多边形诀窍歌:

份相等分割圆,n值必须大于三, 依次连接各分点,内接正n边形在眼前。 经过分点做切线,切线相交n个点,n个交点做顶点,外切正n边形便出现。 正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点;如果n值为偶数,中心对称很方便;正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单。 35. 函数学习口决:

38 / 39

word 正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;

反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换;

二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

39 / 39

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- igbc.cn 版权所有 湘ICP备2023023988号-5

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务