搜索
您的当前位置:首页正文

高中数学教学设计模版

来源:爱够旅游网
宣城市2010-2011学年度中小学幼儿园优秀教学设计、教学课例和教育案例评选参评案例 吴玮 宁国市津河中学

课题 : § 2.1.2指数函数及其性质

一、教学设计思路:

1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。只是从一个角度看函数是片面的。本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。

2、本节课我努力做到:①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;③通过课堂教学活动向学生渗透数学思想方法。 二、教案 授课人 吴玮 学科 高中数 学 课 题 § 2.1.2指数函数及其性质(第一课时) 学校 宁国市津河中学 教学目标 (1) 知识技能目标 : 1、理解指数函数的定义和一般形式; 2、掌握指数函数的图象和性质 (2) 过程与方法目标 : 通过自主探索,让学生经历“特殊一般特殊”的认知过程,经历并逐渐渗透分类讨论、归纳推理等思维和数形结合的数学思想 (3) 情感、价值观目标 : 让学生感受数学问题探索的乐趣和成功的喜悦, 激发学生学习兴趣; 教学重点 指数函数的图像和性质 教学难点 指数函数图象和性质的发现过程,及底数a对函数图像的影响 教学方法 探究发现、小组合作 教具、实验多媒体辅助教学 情况 教师活动 学生活动 设计意图 课时安排 2课时 (一) 创设情景,形成概念: 学生积极抢答两个情1.设疑激趣,情景1:让1号学生准备2粒米,2景问题,统一两个问通过与一次函号学生准备4粒,3号准备6粒,4题的函数解析式:数的对比发现号准备8粒……请问51号同学准备y2x(xN)多少粒米? 情景2:同上,让1号准备2粒米,2号准备4粒,3号准备8粒,4号准备16粒……请问51号同学准备多少粒米?(251约为1.2亿吨米) 问题1:在以上两个问题中,每位学生所准备的米数用y表示,每位同学的编号用x表示,y与x的关系如何表示呢?这两个函数你熟悉吗?会命名吗? y2x(xN) 一新的函数模型,并感受新函数指数函数的爆炸增长。 2.在列式时注意自变量的范围,强调对函数定义域的要求; 3.引导学生把握特点,试试自己命名,激发探究欲望 (二)引出概念,探究条件: 定义: 学生试探命名后仔细通过对a的条阅读定义,形成初步件限定的具体分析,一方面一般地 , 函数 y=ax (a1且感知; a1) 叫做指数函数 , 其中 x 对底数a的分类进行加强对指数函是自变量 , 定义域为 R 问题2:讨论底数a的限定原因 (1)若a=0 当x>0时, ax= 0 当x<0时 , ax 无意义 (2)若a<0 如:y2x对x无意义 (3)若a=1 yax1是一个常数 , 无讨论的讨论,加深对定义的数一般形式的理解 掌握,为后面练习1请同学回答,研究其图像和其他同学加以纠正 性质奠定基练习2请一位上台板础;另一方面演 让学生体会数学的分类讨论思想 通过两个练习加深学生对刚所学指数函数定义和呈现形式的理解和简单应用。同时注意当中对底数a的限定条件 12必要 练习1:试判断下列函数哪些是指数函数 (1)y2x (2)yx2 (3)y32x (4) y2x1 练习2:已知y(a23a3)ax是指数函数,则a= (三)发现问题,探究性质: 请一位同学回答,其通过对旧知识问题3:研究函数要研究哪些方他学生加以补充完善 的复习对学生面?可以通过怎样的方法来研学生活动1:小组合究?怎样研究指数函数 作,利用描点法画进行数学思想方法的渗透,并迁移到新知识的探究上 问题4:四小组成员分别作出下图,画完交流结果 列图像 (1)y2x (2)y3x 11(3)y (4)y 23xx学生活动2:提出对底数分类的猜想后观1、培养学生合察几何画板演示,验作意识; 证猜想 2、利用几何画板的动态演教师活动: 1、巡视指导,引导发现 示,给予学生教师活动 直观认识 2、利用几何画板演示底数a不断1、由特殊到一变化时对应的函数图像 般再到特殊的问题5: 数学归纳方观察图形探究性质,填写下表: 法; a>1 00 ,y>1; x>x<0 ,00,y>1 总结 (四)深入探究,加强理解: 1问题6:观察y2与y 2x教师不急于函数 学生观察刚所画的图给出结论,, 像,小组之间比较、而是让学生识的形成过程,从而形成自己对重难点的突破策略,培养学生的感悟能力和分析能力 x1y3x与y()x这两对函数图像,3它们之间有何联系吗? 教师活动: 1、利用几何画板演示图像(同一坐标系内) 2、引导学生进行正确分析,鼓励他们积极思考发言,表达自己的观点 总结: 请一位同学上台板演,感受数学中蕴三、

含的对称美。教学

感悟结论的同点

时实现难点的评:

突破。 通过本例的设置一方面考察对指数函数一般形式的掌握,另一方面考察学生对指数运算的计算能力 (1)在第一象限中图像越往其他同学在下面练习 上底越大; (2 )当底互为倒数时,图像关于y轴对称 (五)当堂训练,巩固提高: 例1:已知指数函数的图像经过点(3,),求f(0),f(1),f(-3)的值 (教师用多媒体演示) (六)归纳小结: 1、回顾本节课所学; 2、掌握了探究函数的哪些方法和思路 (七)布置作业: P习题2.1 5,6 59学生回答 (八)板书设计: 课题:指数函数 一、定义 二、图像和性质 练习2: 例题1:

因篇幅问题不能全部显示,请点此查看更多更全内容

Top